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PREFACE

This Final Report is submitted to the National Aeronautics and Space
Administration's George C. Marshall Space Flight Center, Huntsville,
Alabama, in response to the contract provisions of deliverable items

associated with Structural Dynamics Payload Loads Estimates, Contract
Number NAS8-33556.

The study took place during the period from August 1979 to October
1982 under the direction of Mr. W. Holland of MSFC, Huntsville, Alabama.

During this three year period the following documents were produced:

1. Methodology Assessment Report
August 1980, MCR-80-553

2. Methodology Development Report
August 1981, MCR-81-602

3. Final Report
September 1982, MCR-82- 601

4, User Guide
September 1982, MCR-82- 602

S. Monthly Progress Reports

The present Final Report together with the User Guide are intended to
be largely self-contained, Chapter I deals with an overview of existing
approaches to the problem of loads calculation. Chapter Il introduces a
full-scale version of an alternate numerical integration technique %o
solve the response part of a load cycle. A set of short-cut versions of
this algorithm is developed in Chapter I11. The implementation of these
techniques is described in Chapter IV which deals with the software
package. It should be noted that a complete documentation of the
software can be found in the User Guide MCR-82-6(02 . Finally, in
Chapter V the reader can find some tentative conclusions and a few
suggestions of a more general nature. This report concludes with a
rather extensive list of references.

The author wishes to thank D. Devers, H. Harcrow and G. Morosow for
their constructive comments and for reviewing parts of the manuscript.
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INTRODUCTION

The design and subsequent development of today's aerospace structures
require extensive analytical and experimental studies. These
investigations are necessary to ensure complete confidence in the ability
of the total system to perform its required functions. Over the years a
sufficient body of technical know-how has been accumulated to allow for
an adequate system analysis prior to launch. However, with the
appearance of larger and more sophisticated space structures, many of the
analysis techniques are now being stretched to the limit of their
capabilities. Indeed, the problem at hand sometimes has to be adapted in
order to fit the analysis technique. This is particularly evident when
dealing with large space structures and their corresponding finite
element models.

An important part of a design effort is the prediction of loads in
the members of the structural system. A complete load cycle includes
such items as modeling, modal reduction, modal analysis, load
calculations ,response analysis, etc. As mentioned above a load cycle for
a relatively small structure is fairly well standardized. The first step
consists of constructing a discrete model for the structure. The analyst
has to worry about the phenomena he wants to represent, how he will model
certain structural elements, whet methods he should use, etc. 1If the
structure is small, it is safe to say that an accurate structural model
can be derived at reasonable cost. The next step in a load cycle is the
calculation of the response of the structure to a given external force
environment. Usually, a modal analysis technique is used, yielding a set
of decoupled modal equations which are easily solved. Modes and
frequencies essentially repreaent the physica of the structure and as
such reveal much useful information besides the response. The last step
in the load cycle is the actual calculation of the loads using “he fact
that the load vector is the product of the stiffness matrix ar the
displacement vector. When the structure is small, all modes can be used
to obtain the displacement vector and no acccuracy problems occur. The
analyst finally sends the maximum loads to the stress engineer who
calculates stresses and strains and finds out if certain structural
members are correctly designed so they can survive the external force
environment. When corrections in the design are necessary they will
affect the overall response and therefore another load cycle is necessary.

The techniques used on small structures are well established and
tested on numerous real life structures. Large space structures pose a
new set of problems primarily related to size and cost. Booster vehicles
with payloads, such as the space transportation system aside from being
large, have their own peculiar set of difficulties. The United States
utilizes a rather small family of launch vehicles (boosters) to support a
varied spectrum of satellite and spacecraft (payloads) programs. These
launch vehicles have been carefully designed tc accomodate a wide range
of payload configurations. In general, the payload interfaces with the
launch vehicle et a limited subset of candidate structural "hard" points
at the payload launch vehicle separation plane. The Shuttle Orbiter is
thie latest example and is unique in the sense that it is reusable. The
shuttle orbiter/payload(s) system therefore is not only a large space
structure but part of it. namely the orbiter, is the same structure in
every flight configuration. This makes the shuttle a unique challenge
from the structural analyst's point of view.
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It is important that any candidate payload be designed to withstand
the load environment transmitted to the payload from within the shielded
payload compartment. Such environments commonly originate from a static
(steady state) vehicle acceleration, & transient or dvnamic event such as
rocket motor ignition, or an acoustical environment. Very often, it is
the transient dynamic response behavior of the payload that constitutes
payload design load profiles; hence, it is important that proper
attention be given to the payload transient response characteristics as
influencing major design decision=. As an example let us consider the
launching of the Shuttle Orbiter carrying a payload such as the Space
Telescope. Obviously, when the rocket engines are ignited the Shuttle
Orbiter will experience reaction forces. These forces will be
transmitted to the Space Telescope in the cargo bay through the interface
(i.e., through the connection points between the Orbiter and the Space
Telescope). The space telescope then, will undergo elastic
displacements. The question is, will the space telescope be able to
withstand those vibrations without being criticall- damaged. The owmer
of this expensive telescope does not want to find out the answer to this
question by trial and error. Therefore, an analysis is necessary. This
analysis constitutes the load cycle as previously described. In the
following we wish to point out some of the particular problems that arise
during a load cycle conducted on a space structure such as the Shuttle
Orbiter/Payload(s)/System.

The first step in the load cycle, i.e., the modeling of the structure
already poses a few unique problems. Even though research and
development in the area of modeling techniques should continue, the
engineer has available to him an excellent choice ot approaches. When
the structure is large, the engineer has to take into consideration the
size of the model. The question then becomes not so much do we have the
necessary tools to model the structure? but: can we develop an adequate
model of reasonable size and cost? To answer this question the engineer
has to look at the particular phenomena he wants to describe and model
accordingly. That is why the model developed by the structural engineer
is often radically different from the model developed by the thermo
dynamicist or the control engineer. Furthermore, if the booster model is
reusable, the analyst must find ways to inccrporate this established
knowledge. Coordination between payload and booster organizations
becomes critical. Reduction techniques must be considered. 1Is finite
element modeling always recommended? Often, modeling cannot be done
indiscriminately as not to result in oversized models, necessitating
reductions of one kind or another. The analyst has to make sure he does
not loose sight of the essential physical characteristics of the system
in view of the large model. For example, is it necessary to model
certain elemenls with two hundred degrees of freedom when the essential
structural parameters only count five? 1Is there any benefit in hybrid
models, partially discreet, partially continuous?



The next issue is the calculation of the resoonse. Solving an eigen-
value problem for the full-up discreet model becomes virtually impossible
because of the enormous size of the model. The important question of
model reduction becomes inevitable. Reducing a model can be done in
several ways. A widely used technique is static reduction or Guyan
reduction. This technique has to be administered with great care. Error
analyses are scarce and much engineering judgement is necessary. Another
popular technique is modal synthesis. Many different approaches and
improvements of these approaches are available and will be discussed in
more detail in subsequent sections. Again, no real error analysis is

available and care must be taken not to loose vital information about the
system.

Once the modes and frequencies of the structure are known, the
response can be calculated for several flight events. Many accurate and
cost effective numerical integration techniques for the solution of a
decoupled set of modal equations exist and have been used successfully.
Large space structures should not present any special problem when the
models can be reduced to acceptable sizes. The Space Shuttle however,
poses a different kind of challenge. Indeed, the reusability of the
shuttle makes it necessary to be able to deliver many load profiles at
relatively short time intervals. The multitude of events, flights and
payloads together with the reusability of certain models, flight data and
other shuttle related knowledge, seems to require another breed of
response techniques, indeed another approach to the entire load cycle.
Short-cut methods in the load cycle which take complete advantage of the
special nature of the shuttle problem should be developed. Much has been
done but many possibilities still need to be looked at. Reduction
techniques, response techniques, load calculation techniques, etc. shouid
be investigated in the light of the particular needs of the shuttle. The
relationship and interfacing between payload designer and payload
integrator and booster organization and many other agencies and
organizations is an integral part of this effort. Possibly, cookbook
type approaches are necessary in order to facilitate the task of
potential payload contractors or payload integrar on organizations. It
seems appropriate to have short-cut techniques available in the
preliminary design phase of a payload which are developed for specific
circumstances and lesve the payload designer with as much independence as
possible. Only during the final verification cycle should expensive
analysis tools be used.

One of the major objectives of this report is to provide the reader
with some insight into the multitude of problems and corresponding
attempts at solving them which are available in the literature. The
other objective is to develop a short-cut method in order to numerically
integrate the equations of motion of the booster/paylvad system,
Finally, we - "sh to indicate also a few other possibilities for research
in this qui. ; expandiag field of payload integration techniques.
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Finally, the actual calculation of the loads is also affected by the
reduction of the model. 1In particular, when modal synthesis is employed,
it is generally not possible anymore to use the straight forward approach
where the loads are given by the product of stiffness and displacement.
It was found that significant error can result from such a displacement
technique. Therefore, the so called acceleration approach is
introduced. It makes the numerical problem more complicated but it
yields accurate results.
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CHAPTER I. OVERVIEW OF EXISTING '(fECHNIQUES

A, FULL-SCALE TEC..iIQUES

l. Introduction

The objective of this chapter is to identify and discuss some of the
most prominent techniques used in the course of a typical structural load
cycle. This will acquaint the reader with state-of-the-art methodologies
and the necessary background information in terms of a unified
nomenc lature. Also, many of the features of these methods can be in-
corporated. into possible short-cut approaches. In additionm, this
chapter will give us the opportunity to more clearly identify the
requirements of an acceptable short-cut methodology in connection with
the STS (Space Transportation System).

Any structural analysis starts with the derivation of the equatiom of
motion for the system at hand. In the next section we shall derive a set
of coupled differential equations describing the motion of a
booster/payload system.

2. The Equations of Motion in the Discrete Time Domain

The objective of this section is the derivation of the equations of
motion . the booster/payload system. This set of equations subsequently

must be solved in order to generate displacemeat histories which are
needed for load calculations.

Figure 1 shows the free body diagrams of the booster B and the
payload P. The booster and the payload are connected to each other
through the interface. Physically, the interface is the collection of
structural "hard" points which the booster and the payload have in
common. Mathematically, this means tt 1t the generalized interface

displacement vector~{x? }on the booster side of the interface must be

P

equal to its equivalent{xI

}on the payload side. Hence:

B P
{ X; } = {XI } ’ for all times t (1)
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Figure 1. Free Body Diagrams of
Booster B and Payload P
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Similarly, the generalized reaction vectors {R? } and {Ri} at the
interface satisfy,

{RIIS} - {RII’} ,  for all times t (2)

From the free body diagrams in Figure 1 we can easily write the
equations of motion for the booster B and the payload P as,

g FB ‘ Ry

Sl Rl SRR E)
p *p Fp ( Ry

i
t
]
J
!
|
1
[}
{
{
i
1
+
'

where {xg} represents the generalized displacement vector of the
booster B. Furthermore, the matrices [Mg] and [Kg] are the mass and
stiffness matrices of the booster B, respectively. Finally, the vector

FB} represents the externally applied forces on the booster B and the
vector iRB}denotes the reaction of payload P on the booster B. Similar
quantities for the payload are defined.

Note that the top partition in equation (3) corresponding to the
booster B, is still completely uncoupled from the bottom partiticu
corresponding to the payload. In order to derive the equations of mot’
for the coupled booster/payload system, we need to eliminate the a pric
unknown reaction vectors {Rn}and iRP}- We shall now establish a
convenient and physically meaningful way to accomplish this elimination.
To this end, let us first introduce the interface/non-interface
partitioning. Indeed, {XB} (Mg], [Kpl, {FB* and {RB}n n be
partitioned according to interface and non-interface cegrees of freedom,
as follows:

B B B
XN ; Fy Ry
{*s} = )77 {B} Y A (4)
xB F RB
1 I 1
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Again, similar quantities can be written for P. Note that the subscript
N stands for Non-interface and I for Interface. Because there are no
non-interface reactions we can write:

(£} - {o} . {x}- {0} (6)

substituting equations (4), (5) and (6) into equation (3) yields

i f..B) "B B M (3B r B
et o) oo ] ke v o0 oflx2 F ]
ﬁsf-a;___gd__. i B L el A || RO
{ l B B 1_.B i | B B B
M];N l M?Il 01 0 Xy Kt %210 O O} % Fi+ R
| p P P ! p I p 13 P
! 3 10 ¢ 1 F (7)
0 1O MW M | [P O 10 18w K] N
L0 00 M M d ) PO %Rl TR

Both equations (3) and (7) represent the uncoupled equations cf motion of
the undamped booster B and the undamped payload P.

Next, let us solve the third partition of equation (7) for the
non~interface displacement vector { p }of the payload P.

N

(E)e - [ [ {5 ) [x:,,]*({v::};[ AIESNFATEINE



It 18 now noted that the non-interface displacement vector{xS}conaicta
of two parts. To understand the physical meaning of these two terms let
us assume that the interface displacements are zero 1i.e. {x } - {0} .
In that case it follows from Eq. “8) that the second term on the
right-hand side can be interpreted as the non-interface displacement of
t?; payload with respect to the interface. Let us denote this term by
{Xyf. It 1s then clear that the first term on the right-hand side of

Eq. (8) represents she non-interface displacement of the payload due to
the displacement {xI} of the interface only. Therefore, Eq. (8) can be
written as !

fat = [ {45} + (=) "’

with

(10)

It should be clearly uwderstood thatS'EEE i8 not the non-interlare
displacement vector of the payload with respéct to a fixed interface lLat
with respect to tke laterface (i1.e., as seen by an observer moving with
the interface).

Equations (1), (9) and (10) can now be used to construct the
following transformation:

VB IB WP
M x '_1:(.)_1_0_‘-1 _’EB
z \m | |ebriof 1A .
vl 1%8 * Rk (11)
AT IS
ORI -

OF POCR GunsiTY



Note that we indicated the row and column sizes of the matrix partitions
in the above equation. NB = number of booster non-interface dofs. NP =
the number of payload non-interface dofs. IP = IB = number of interface
dofs.

Transformation (11) will eliminate rhe redundant set of interface
displacements{xp} in Equation (7) and in the process will also eliminate
the unknown reactious {RB}and{RP } . First, let us introduce a more
convenlent notation: 1

e | 1010 ) [ropo ],
) t
z5 OJ I j 0 0 IE 0 A .
Pl ob T | 1 = A (12)
]
¥ _O_Lif.’j_l___ Tp i L |p
IP[ of 1o | |
V8 IB NP 8 wo~
L
OF POOR {(uniii
with B = NB + IB, P = NP + IP and,
|
0 s 17
T = 1 8 NF
[P] —+ [IP] - ["‘ (13)
o)1 |, 0jzre
Pxé PxNP NP

With this notation we now substitute the transformation (11) inte
equation (7) and premultiply by AT (T = transpose). This yields the
followirg result:

T 1 .T y T poT
Y + Vo1
8 Y T T Ter TpMplpl | %5 Kg * Tp%pTp 1 ToRplp| | *s
- — o —— — ———— —_— o P o e e ma -——— =
T I 7 »p T b P
i1
P TpMpTp | IpMpIp | N TpKpTp HRSLS 5 N
8 NP (14)
\
Cp
Cp
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~| Ty
P
{GB} T , {GP} N {FN}
Bxi IB\ . S.II;F; +F NVPxi

(15)

We also used equations (2) and (4).

At this point a few remarks are in order. First we shall show th.at
matrix product [Tp]T - [Kpl : [Ip] is always zero. From equaticns
(5) and (13) we have:

P, P
[TP] T[“y] [Ip] = jqi_i j}j.:;_l(il_ |—__I_ = __‘i.__ (16)
S;E; ! K}I’NE KII’I 0 S: 'SJPN * K}I)N

Substituting the expression (10) for [Sp] into the lower half of
the right hand side of equation (16) yields:

T

[ e [ =[] R B ] - [o]

(] <[] ([6] s ormern)

Secondly, the triple matrix product

, P, P : \
' T e 0+ 07 [ Kyt K1 0_: Sp] o: 0 i
e ] Do) (%) " |mo| fmin ] " e T o
] . ]
Spo 1) LRmwe¥rrg LOGT 0F Kn S + ¥pp

will be zero for a statically determinate inter” -e. The interface is
called statically determinate when the numbev uf interface degrees of
freedom is equal to the number of rigid bc?: degrees of freedom of the
structure at hand. Otherwise, the intertace is called statically
indeterminate. To show that [Kyy] [Sp] + [Kyy] in Equation (17) is

zero for a statically determinate ‘-terface, let us first state that the
numerical values of the elements cf this matrix are independent of the
dynamical state of the structure. More specifically, we could constrain
the booster and consider a case of static equilibrium for the system
under the action of a force {pg} and all other applied forces equal to
zero. As far as the stiffness matrix [Kp] is concerned, there will be
no change. Therefore without loss of generality w2 consider the
equilibrium equation of P under the action of {RE} .



[KP] {XP} ] & 8??3%; g{,ir{%{ (18)

or using the partitioned form of [Kpi, we can write

[KSN] 3"55 * [“;] ;"ii - 302 (19)
%] H‘ * 1] H‘ i ;Rl;i (20)

From equation (19) we can e~lve for gxﬁ t:
R S R TR BRI

where we used equation (10). Substituting equation (21) into equation
(20) yields:

<[K§N] [S"] ' [KI;I]);’(II,% i H 2 (22)

At this point we should note that when the interface is statically
determinate no stresses can be set up in P by the interface
displacements {xg}. Indeed, for a statically determinate interface the
matrix [Sp] becomes a rigid body transformation, transforming the
interface displacements into equivalent rigid body displacements of the
non-interface degrees of freedom of P. Because, in addition we assu d
that no other forces are acting on P, it is clear that{RE} is zero in
Equavion (25), from which it follows that

[55] Lse] + [c]-o0 29

This completes the proof.

Finally, we note that in most applications of interest to this
contract, the externally applied forces{FR} , {FR}, and {Fg}axe
nonexistent. For example, STS payloads will be enclosed in the cargo bay
and will not be exposed to external forces. Therefore we write

$F;$=;F?2’§F§i - ;°$ (26)

Introducing Equation (24) into equations (15) and taking into account
that [TgKP1;l= [o] we can write the final form of Equation (14):
&

T : T o ) T ] ‘
I 1 e e [__XE‘H Kg + TpKpTp! O ] "3y _ ). B
T i T ﬁﬂ" ' 1,
IpMpTp | TpMpTp {*Nj 0 :ITKPI l T 0
i 1 PP P} 17N
(25)
B
{ } Fy (26)
R 26
B 0
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{"B}= R (27)
B
1

represents the generalized displacement vector of the free booster B.
The vector {xy} contains all non-interface displacements of the booster
and {:?} represents the interface degrees of freedom. Furthermore,
the vector{iﬁ§ represents the non-interface displacements of the payload
P with respect to the interface. The matrices [MB] and [Mp]

represent the mass matrices of the booster and the payload respectively
and [Kg] and [Kp] represent the stiffness matrices. The matrix

[TP] is a constraint modal matrix, characteristic for the payload P,

In case of a statically determingte interface [Tp] represents a rigid
body transformation. Finally, {F } is the externally applied force
vector acting on the booster B. The matrices [Tp]T [Mp] [Tp] and

[TP]T {Kp] [Tp] contribute only to the interface degrees of

freedom as can be seen from Equation (17) and from

R ST I TP el O Y S

T P P P
sp 1
P "In M 01 0om,

[“l?] [SP]'IY([M:N][SP] "[”ﬁr])’k [MII'N] [Sv] ! [”Y:]

T, - matrix ['I‘P]T [MP] [TP] esgentially repiresents the payload

mass reduced down to the interface. Similarly [TP]T [KP] [TP]



represents the payload stiffness reduced down to the interface. Ncte
that when the interface is statically determinate no stiffness is
transferred (Equation (23)). When the interface is statically
indeterminate there are what is commonly called "constraint modes" ,
i.e., the interface displacements { XB} not only induce rigid body
displacements in the payload but also elastic deformations. This causes
the triple product [Tpi' [Kp] [Tp] to be different from zero.

It should also be noted that damping is not included in Equation
(25). However, modal damping can always be taken into account later.
Fina.iy, the matrices [Mgl], [Kgl, {Mp] and [Kp] must be
constructed by the appropriate organizations. The booster and payload
organization will usually be different contractors. If in addition the
integrator is another organization it is clear that there is an
interfacing problem. A fair amount of coordination is necessary to make
the transfer of information between thcse three organizations optimal.
Unfortunately, this coordination is very difficult to establish resulting
in considerable time delays. Moreover, these costs and delays repeat
themselves for every load cycle (i.e., every time a change is made in the
booster or payload). A typical example is the development of the Viking
Orbiter System . Upward of nine organizations were responsible for
hardware or integration functions which directly affected the evaluation
of dynamic transient loads. The number of interfaces between those
organizations resulted in difficulties in arranging for the necessary
analyses at each organization, in obtaining the necessary data, in
establishing priorities, in establishing output requirements and in
correctly transferring data between organizations. The time duration for
one load cycle ranged from three to twelve months which depended on the
number of events, forcing functions per event, and complexities of the
analysis. Of course, if the booster already has its final design, many
of these problems can be avoided. Theoretically, only one transfer of
booster data to the payload organization would be necessary. This
concludes this section on the equations of motion of the booster/payload
system in the discrete time domain. This is a necessary first step in
any load cycle.

10



3. The Solution of the Equations of Motion

a. The discrete time domain

As stated in the Introduction, the objective of this study ies to
determine design loads for the payload structure. These design loads are
then used to calculate stresses and strains that would exist in the
structural elements that make up the payload. The stresses and strains
allow the designer to determine the correct physical and geometric
properties of the elements (mass, stiffness, lengths, cross sectionms,
etc.) so that the structure does not fail when subjected to the external

forces{ FB !. An element loads equation is written as

3"2 i - [ke] [Te] 3:5,$ (29)

in which {ui} is the load vector of an individual element e of the
payload P, [ko] is the stiffness matrix of the element, and [Tg] is

the geometric compatibility transformation. The vector {xp} is the

time dependent displacement vector of the payload satisfying Equation
(25). Consequently, in order to determine {li}}in Equation (29) we need
to solve Equation (25). <

The most straightforward approach to determine {xp} is to solve
Equation (25) as a set of simultaneous second order differential
equations, There are several well established response routines that
handle such problems (Runge-Kutta, Newmark—Chan-Beta Numerical
Integration, etc.). This direct approach has the advantage of simplicity
and accuracy. However, the main drawback is the high computational cost
due to the large number of degrees of freedom used to describe today's
aerospace models. In this connection, as a counter argument, one could
ask the question if such large models are really necessary. In any case,
unless a drastic reduction of the model is possible, this direct
integration approach is not favored. In addition, this approach does not
yield much qualitative information about the system. As will be
explained below a modal approach reveals more qualitative information.

b. Modal Analysis

In this section we shall discuss a technique commonly known as modal
analysis. This approach will lead us to an alternate solution method for
Equation (25) and we shall show that it has some definite advantages over
the direct solution of the set of differential equations (25) as
digscussed in Section 3a.

We start the process with the homogeneous set of equations extracted
from the top row of Equation (3).

[s]{} + [l ft - {o} o)

11



Associated with this equation is an eigenvalue problem,
-]+ (] s} - {0}
BL B B B (31)

where the vector{ 4 3 represents an eigenvector (mode shape) and W, an
eigenvalue (natural frequency). The solution of this eigenvalue problem
essentially produces a linear transformation matrix [4)] (modal
transformation matrix) in which each column represents a mode shape of
the booster B. The main property of this modal transformation is that in
the new normal coordinate system {4,} , the equations of motion (30)
tecome uncoupled, i.e., if we apply the transformation,

b - [l

to Equation (30), and premultiply by BPB]T we obtain

[ ] Pl [ sl [ ] ol o] - ot o

where the coefficient matrices of {Qa} and { fare now diagonal,

I - ) YRR (] o

where [$Pp] was normalized with respect to [Mg]. Equation (33) can
then be written as

KINENEIRT =

J

The obvious advantage of applying the modal transformation Equation
(32) is that Equation (35) now represents a set of decoupled independent
second order differential equations that are easily solved. The price to
pay however, is the cost of the solution of eigenvalue problem (31).

There are many well established eigenvalue problem ''solvers" available
(Jacobi, Rayleigh-Ritz, etc.) .

The next step is to consider the homogenous equation,

[1"’]T [M‘] [I"] ;;:( ¥ [’p]T[K,,] [r!,] g'ZH - 3(,‘ (36)

ORBQ,.. o S e
OF POOR QUALITY
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(e ][] (] =[] (20" [oe] {227 = (] 1)
So that Equation (36) becomes

[M:N]gigi Y [K:N] ;Si ) }02 (38)

In the same way as we did for Equation (30) we can introduce a modal
transformation,

QH - ["’g]ﬁi (39)
with

B D - L ETRIE - [2] o

where we wrnte[al%] instead of[t—n-gzlto simplify the notation. The modal
matrix EN] has as columns the "cantilevered" mode shapes of the payload P
and ‘-"i has the natural frequencies squared of the cantilevered payload
(i.e., fixed interface) on its diagonal. Using Equations (39-40), we can

write Equation (38) as
=p 27 {=p{ _
qui + (=) %“N% - M 1)

Let us now apply the following transformation to Equation (25),

]
a3 O e TR N TS (42)
~p HE —~p
*N tonJ Ly
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and premultiply by

' . Taking into account Equations
(34) & (41) we obtain, ! $P
L | "N

T
I+¢TPMP p%s! B

T. . =P - T.T | .
TpMplpéy 9 [ J M ¢BTPKPTP¢B£__(3___ ; 9 ; 3 o G
' =

=p 1 —ZJ
I Y 0 {[ “p

At this point another eigenvalue problem could be solved for the
coupled system represented by Equation (43). This would finally lead to
a set of decoupled equations for the system. In fact, one could solve
just one system eigenvalue problem for the homogeneous equation given by
the homogeneous part of Equation (25). Numerically this approach does
not yield much advantage over a direct solution. For one, the solution
of a large eigenvalue problem is very exp'nsive and essentially increases
with the cube of the dimension. The moda. approach has the advantage of
uncoupling the system equations, which allows us to investigate several
load cases with little addied cost (if the structure and its constraints
do not change). It also has the advantage of revealing physical
characteristics. After all, modes and frequencies essentially embody all
physical information. But their is potentially a much greater advantage
present in the use of modes and frequencies. It can reduce the number of
modal equations to be solved. This is why equation (43) was derived in a
stepwise fashion.

]

1

\

\

$PTIT T 4 E
N Tty

c. Modal Synthesis Techniques

From what we have seen so far we can conclude that for small systems
we have the necessary techniques to model the structure and subsequently
find the response. The response can be found by direct integration of
the discrete equations of motion or by first solving an eigenvalue
problem. However, when the structure becomes large and the model has a
very large number of degrees of freedom there is a problem. Direct
numerical integration or solving a large system eigenvalue problem
becomes prohibitive. Therefore, remedies have to be found. In section
3b we already layed the groundwork for a reduction technique called
"modal synthesis'". Indeed we introduced the free modes of the booster
and the cantilevered modes of the payload(s). These mode groups are then
"gynthesized" so as to yield the final coupled set of equations (43). As
pointed out, this procedure by itself does not reduce the size of the
problem and actually requires the costly solution ot several eigenvalue
problems. However, in most practical applications there is a possibility
of defining a so-called "cut-off frequency In these cases a Fovrier
series expansion of the force vector {Ff }shows that the energy content
of the h1gh trequency components 1is smail compared to the energy
contained ‘~ .he low frequency components. Practically, this means that
the respouse of the structure due to the high frequency content of {E&_}
can often be neglected. In this connection it should be noted that it is

14



relatively difficult to excite the higher modes of the structure to any
large extent, especially when 1F“y only contains & few elements (i.e.,
only a few application points). The idea then is to first truncate the
booster modes and payload modes in Equations (32) and (39) according to
that "cut-off frequency". No thorough investigation has been published
concerning the approximation involved in such a mode truncation. It is
largely a "practical' matter supported by some theoretical
considerations and the fact that it works. Truncation of the modes on
the substructure level reduces the size of the 2igenvalue problem related
to Equation (43). Once this reduced eigenvalue problem is solved another
truncation is possible, this time on the system level. To make this
clear let us write equation (43) as follows:

(M1 479y + k1 faq} = {0} )
with [ I, T 6
I+ ¢ TPM.PT ¢B ngBMP P¢lj_] OR!UN\M- ¢,

[

{

1 N
M} =17 ! I OF POOR QUALITY

T
PT,¢ 1 J

L Ty M ety
[ 2l .. 'r KPT 6.1 0
[K] = _,.§ ———————— E-~-.P--§:.

[}
}
L o {0 (45)
T
q . 436y
{q} = .._.§~ s iQ} syt T==-
- 0
N

where we should stress that FPB] and [¢ ] are already truncated so
that the size of [M] and [K] is 81gn1f1cant1y reduced. Now, we solve the
eigenvalue problem associated with the following homogeneous equation:

(M} {4} + (¥1 {q} = {o} (46)

leading to

{a} = IFs (47)

H

1Tyl = 111, (YT IR) V) rn?) (48)

ls



and

(£} + t3ugE+ Mg - 170} %9)

where we introduced the customary modal damping. We also truncated the
modes [¥] again according to the present cut-off frequency. The final
set of uncoupled Equations (49) is now solved with a numerical integrator
such as a Runge-Kutta method.

Note that there are several synthesis techniques available, the
purpose always being the reduction of the system size. When working with
large structural systems and their corresponding large mathematical
models, reduction methods become very important. Ways to reduce systems
are: modal analysis, Guyan reduction, component mode synthesis, etc.

The component mode synthesis approach as described in Section 3c is
approximate in nature. Several techniques are availchle to imgrove on
the accuracy, two of which we shall now discuss.

d. The Residual Mass and Stiffness Method

As explained in Section 3¢ in many cases it is possible to define a
cut-off frequency which enables us to truncate the higher modes in
Equations (32), (39) and (49) thereby reducing the size of this
equation. Obviously, some accuracy in the response of the structure is
lost due to the truncation of these higher modes. This loss of accuracy
is especially apparent at the interface. The residual mass and stiffness
method, instead of omitting these high modes will replace them with a set
of "residual modes". The computation of these residual modes does not
require any knowledge of the payload so that they represent a one-time
computation effort not to be repeated as long as the booster stays the
same. In order to determine the residual modes let us consider Equation

| {XB} :[%] {qB} (50)

which represents the modal transformation for the booster B. Assuming a
cut-off frequency was determined we can partitioa Equation (50) as

follows:
oI
H 3
| |- (51)
H
q

ORIGINS:
OF POOR Qum.mf
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where[¢> ] represents the modes with frequencies less than the cut-off
ftequency and[4’B those with higher frequencies. At this poini one
could neglect L¢B nd calculate the response as a lincar combination of
the lower modes [¢p]only. Usually this yields a poor accuracy in the
response and the loads. The reason is that in most practical cases a
significant part of the interface response is produced by the higher
nmodes. Tideed, a typical interface is rather stiff and has little mass,
i.e., that locally the interface has a high frequeicy content so that it
responds significantly in the high frequency range. Irn truacating the
higher modes the model does not include an adequate representation of
that interface. The residual mass and stiffness method now, proposes to
retain the static contribution to the response cf rhrge hi;iicr modes.
This leads to a much better representation of thz inter®~- ., The static

contribution can be obtained from the following static zion
Py
[KB] st = ) (>2)
RI

derived from Equation (3). Substituting Equation (50) into Equstion (52)
premultiplying by [#¥g]T and recalling Equation (34) yields:

B

T | Fy
’qB z ) [¢B ] Ry (53)

Because we are only interested in the high frequency part, let us
write Equation (43) as

2 1 r T
L L L B
[“’B ]‘ 9p ¢ Fx
| = |--B. N (54)
n ul T
o ! wH H ¢H RB
L “s 98 B I
So that from the bottom row in Equation (54) we have
B
F
H HY = W1T N'
[ ) - [T 4 59
R"'
Finally, let us partition [‘1 ] in non-intertace and interface
partitions,
H
HY _ | ®sn
g = |7 (56)
¢H
BI

17
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Substituting Equation (56) into Fqustion (55) we obtain,
2 T T
el Gl ja)- Ll
[“’B] }qu - [¢BN] 3FN§ *a1 I (57)

In principal we can use Equation (55) as it is and solve for {Cf

H
3°°

B
R CA IR
B B *s . (58)
R
‘ I
whicb can be substituted in Equation (51), yielding
L
' -2 T q
[ H1 R H H B
I CH SR TN 1
I (59)
N »
B
|

However, it should be noted that for every force component we keevo,
we add a degree~of-freedom to the problem. If for example,{F;’}contains
many elements (i.e., mapny points of application) it may not pay off to
use Equation (59), i.e., we may as well keep all the modes in Ijuation
(50). 1If however {F“&contains a small number of elements (for example,
in case of a landing or a rocket motor ignition) we can use Equation (59)
as it is, and obtain a better response for few added degrees of freedom.
However, because the cut-off frequency was defined ir such a way that all
significant frequencies of QFS} are contaired in the lower frequency
range L, we can state that the booster model will adequately respoad
to {F?} and no significant portion of the response will be lost.
Theregore, we can omit the term in iﬁ?} in Equaticn (57) altogether and
just keep the interface part in jR3} . The latter part in iRgf is
important because {Rg} will usually have a significant high frequency
content (after all éRef represents the effect of the payload on the
booster and as such c6ntains a wide range of frequencies). Because the
interface usually has a high frequency content (as explained before){R?f
will induce a response at the iuterface primarily in the high frequency
range which in turn will be, transmitted to the rest of the booster.

On the other hand if {ﬁgfcontains reaction elements due to scme
external constraints (e.g., a dock) we wish to retain these elements as
well because they are equivalent to elements of fﬂ?}in the sense that
they represent the unknown effects of the constraints and also, the
interface between the constraint and the booster usually has a high
frequency content (e.g., con :ctions between booster snu dock).

18
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Ignoring the term in{F’:; in Equation (57) and solving for {qg} yields

{“g} i [“’:—2] [‘ﬁl]T {x} (60)

which can be substituted into Equation (51), yielding

ot [N

{KB} [°BE ["B][“’B 31 )““2 (61)
AT ZH‘“‘M ]

The term li]{ 41 M represents the residual modes and they

eplace [$T]. Also, note that these modes only involve booster
quantities whxch makes it a one-time computational effort.

Let us now derive the modally coupled equations of motion for tae
booster/payload system. First, we substitute hquatxon (61) into the top

row of Equation (3) and then we premultiply by H ye H 7
yielding ¢B \ [°B ] rwB ] [¢BI
) 29
T3 0 qL [u\L ! 0 q"
O O B + L X S 8_
qi H [‘H'l‘ TR T W21 ) e
1
0 ["BI]L“’B J [%1] Rt 0 lfBI][“’B J ["m] K
P AT o p—
residual mass residual flexibility
[ l.]T B 62)
b
LA N
-2 LY S
H H H B
["BI J r“'n J [% ] Ry

Before proceeding, let us consider the homogeneous equation extracted
from the lower half of Equation (62)

MI][‘“ o) 3 ‘ [+3:] -2 [*31] 3 2 (63)

and solve the following eigenvalue problem

R BT ] - o

leading to the modal t -ansformation

LIRNEILY (69

19
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and the properties

IR LR R AR R o o ! ¢ 2
CYRES SN S R A A CY W G T K R T
(bb)
We shall make use of these properties in derviving thas modally coupled

equations of motion of the booster/payload system. To this end let ua
write Equation (25),

S e e I e - - (67)
o Ty " I 0
Ppp ' ptplp *N -

}
M oao+ et et < Ky + oKyt Lo )
B prp! pop B [ O 2 A N
H . Pt s ()
:
'
qL n Ry T
B ‘ L [ H W] [ n
q = m——— ' -
o P R R)])
R
so that, combining Equations (61), (65) and (68) we can write,

{XB } i [°B] {QB} (69)

We now defin~ a transformation similar to Equation (42)

\ | 1
‘~f§, ; _fﬁj s (70)

where this time{qpjand [Pg] are given by Equation (68)

Applying this tranaformation tc Equation (67) and premultiplying

b r vieids
y .10 ]T
B,
e
l)
]
i ¢N J
r LT 3 & T T T ‘
r
DR N SO I T R IO A S |
5 T T
| L N : -p | P mp : P -p P
‘N IPMPerh : *N lpnplpr g “ :.N lPkPIP¢N N

N
‘ (70
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Using Kquations (34), (19) and (66) we can ahow that

and

[ 0 L] bl B L] I B (5] T4] oo

s0 that Equation (71) becomes

| |

+ ! o'r —r , !
) “ RS LA “ ee'e? ) “‘R ““n‘v"v‘v“' }
- 4

]

i

'

]

i

o
]
-
o
-
£
-
-
-
PR N
=
- r.
[ S

& 0
w (B0 (74)

The residual mass and stiftness techiigque essbutially improves the
interface representation in the model wnere the model ia subjected to a

frequency cut-off.

The result Equation (61) can then be used in any type of wmodal
synthesis technigque such as result Bquation (74). Due to this inturface
improvement it is now possible to truncate the high booster modes while
still obtaining an acceptabile accuracv. 1a fact, inclusion of the
residual wmars and or stiffneas inteo a modal synthesis technique seems to
be the most efficient approach currently available. Another verv good
technique is discussed in the next section.
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e. The Mass and Stiffness Loading Technique

Another way of iwmproving the interface represeutation in he booster
model subject to frequency cut-off is given by a technique dev:loped by
Hruda and Benfield and is based on Equation (25) which we repeat here for
convenience,

T | .7 N, T ! l G
> » \
et TetTed TeeTe ) ) e, f et TR O Xy B
- bl ok T gl Bl b IR R R 1 ———————— - e = - -
]
v T P P T P
1 pMplp *N 0 PIp%ele {1 V) s

Instead of solving eigenvalue problem (31) Hruda and Benfield propose
to solve the following eigenvalue problem,

(-w' [MB + T:;MPTP] + [xp + 15[‘;;(?1."]) 3%2 - ;()z (76)

vielding the modal transformation

{f '[°;‘] 3%% (717)

Again, the modal transformations (39) and (77) can be combined in

x e

B
*N
%D x &'t oo '
__!__ - } R RE qB (78)
R e
r P 1 P T
N ) *N 0 1y N

Substituting Equation (78) into Equatiou (75) and premultiplying
SIS, Tyields,
IO S

\ y
)

I
L()' mN




ORIGINAL TF i L.
OF PR €t .o Y

where we used the properties

] B ] DL (T B sl ) - 1) o

Equation (79) now replaces Equation (43). The main difference lies
in the fact that in solving eigenvalue problfm (76), the boostet
interface is mass and stiffness loaded by[ir M,T ]and PTPK T
respectively; i.e., the booster interface is loaé’d with approx1mate
dynamic eftects of the payioad. In doing so, the new modes[(b jaag
frequenciesfWp Jwill inclvie a good representation of the interface, and
more resemble the system modes. This allcv's us to reduce the number of
booster modes in Equation (79) according tu the p.edetermi. . .ut-off
frequency. The disadvantage of this method in connection with the
present study is that eigenvalue problem (76) is dependent on the
payload. This means that for every change in the payload we must solve
this eigenvalue problem again although the booster drmes not change. This
makes the Hruda/Benfield technique less suitable for our purposes.
However, if the changes in P are small, we can use the old booster modes
as a first estimate to calculate the new booster modes in a Raleigh-Ritz
type eigenvalue problem solver.

f. The Coupled Base Motion Technique

The coupled base motion technique as presented in this section is
another way to obtain the response of a coupled booster,/>ayload system.
This section will give us the opportunity to develop an alternative set
of equations for equation (43). Indeed, we shall not only use
"cantilevered" displacements for the payload P but also for the booster
B, while only the irterface will be free. The derivation is very similar
to the one in Secton b. Let us define a transformation similar to
Equation (9) but now for the booster B

=[] - R

[5] = [ ][]

Equation (11) can now be replaced by

+

with

B - 1 ) —-B
Xy I ! SB EO W Xy
-’_‘?_) T Y e
N T I (83)
~ OF Selt T
P | | P
X L 01 I 0 *N
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Again, this t F;ansfomtmn will eliminate the redundant set of

displacements {Xr}in Equation (3) and in thepprocess it will also
eliminate the unknown reactions {Rf } and {R]}

Introducing the notations

[ ] W i ! ! 1
Ly S O Ig) Ty} ©
0oy 110 110
——— = = A
| | P
of St ) g0t (8
_Ou I 0_‘ R 'TP'TP-

where this time,

RFELEL [T LLEL L) e

L

Note that [Igj and [Ip] have different dimensions, namely (BXNB) and
(PXNP) .

o]

Substituting transformation (83) into Equation (3) and premultiplying
by AT yields,

' ] 7
1 ;T i +=B T ! ' ~B
BIB: IBMBTB : 0 XN IBKBIB 0 : 0 —_T _)_(E_
T 1 - —_—
Il'ITMT +TTT:TTI ;;B‘F 0 TKT+T T:O xB
g'sl T8"sTs ¥ Te"pTp | TpMplp 1 B T5 Tpkp Ty | 1
i 1 —4— - ——
| t i
I 1 T =p 1 1 LT —P
0 IP} PTP 1 IPH'PIP :%’ L 0 [ 0 f IPKPIP XN
. -
T
F
AL
- (86)
TTF
B
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Equation (86) replaces Equation (25).

The basic idea for a base drive method is the separation of the
booster respounse into two separate parts

-B -B F -~B R
N N XN
sl ") sl * B (87)
*1 X Xy
\
where
F
xB
: = part due to the action of {FB}.only (89)
*
and
R \R
‘: e part duc to the presence of the payload (=feedback)
Xy (89)
I is clear that vector (86) satisfies
t - } "
! Ty P kot 0 B L F
LsTs To"a's *N N B R B N ) e 50)
TIM T TMT 0 0 TK.T 5 T;FB
BB B BBB 1 BRBB 1 \
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The solution of Equation (90) is a one-time computational effort
because it only involves booster quantities. If we now substitute

Equation (87) into Equation (86) and take into account Equation (90) we
obtain the following new set of equations

T ] T 1 :BR T y ‘ "’BR
el IgMpTy O N Tp¥pls, 0 : 0 *N
) ettt bttt bl (I Wbttty B Bt ettt - —— - ——— " - ——— -
[]
T v T T T “BR b T i BR
+ ] + P
3 T M e 3 I T S S I 0 ettt O 1)
! |
voT b =p \ Y —p
O TpMpTp t TpMplp *N o 0 TpKp it 2y
0 0
. T, . “BF T BF
B S O T W
T “BF (91)
IPMPTPxI 0

where{;gF* .nd‘ng¥ are known from Equation (90)

The second idea of a base drive method is to consider the bottom
partition of Equation (91) and write it in the following form,

(i) 10+ D) 15} = - () + 13%) -

If one is only interested in the design of the payload, Equations
(92), (7) and (87) is all we need, to determine the response of the
payload. If {Ig“f is known we can '"base drive" the g}yload by the terms
on the right-hand side of Equation (92) to obtain {X5 ¢ . Of

N
course, ing} is coupled into the booster equations in Equation (91).

Equation (91) can also be written in terms of normal coordinates. To
this end let us introduce the following transformation :

—BR --B

—BR
¢ Lo t 0

. N e L -S§_-

BR '

=1 0 ! «p? 0 q?R

. L S e
o ; o - (93)

N 0,0 by ay,
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where [gg]vand [¢§] are obtained from solving the following

eigenvalue problems,

[ z[lBMBIB] +[IBBB]{¢, } = {o! (94)
(4 e ien] + [fggrind | (62 - fo)
vith (95)
BT T —B —2
(1" [der) (20 = (1)L (2] (gt 90 = Ed o0

[o ] [TBM T +TPMPFP] [¢ ] =1}, [¢ ] [TBK T +TPKPTP] [¢T] = fo 1]

97)
where again we used the simpler notations t ] and [wI] instead of
E ] and tw l
Substituting transformation (93) into Equation (91) and

premultiplying by the transpose of the square transformation matrix in
Equation (93) yields the modal form,

T .
BT B 1 =R
« 0
t { Py TeMsTa¢y o SN
T T ol T . P SRR
B ] - L 1 +
Ry I L s S L0 (98)
|_pT T | =2p
]
0 l¢N PMPT ¢ I Iy

-

Equation (98) represents the coupled base drive equations of motion
in modal coordinates. The main advantage of equatiorns (98) lies in the
force term of the righthanu side. If many different payload
configurations must be investigated, then the force term is easier to
evaluate than for example the force term in equation (43). This assumes
of course that the booster and its interface rem.ins the same so that the
solution of Equation (90) remains the same.

The main advantage of Equation (90) is that it is written in a form

that can be used as a starting point for several short-cut methods. This
will be discussed in the next chapter.
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4, The Load Calcutation

As discussed in Section 3, the reason for solving the equations of
motion of the booster/payload system is the determination of the
displacement vector }xp} so that we can substitute this vector into

Lo = [ 10T %) (99)

in order to obtain the internal structural loads{li;} on an individual
member e of the payload P. In principal Equation (99) could be used as
is, but this '"displacement" approach turns out to be very sensitive to
inaccuracies in {xp}; e.g., truncating high frequency modes as we did
ia Section 3b could very easily lead to erratic loads{}.g}.
Heuristically speaking, {xpg contains three parts, the static
displacement, the rigid body displacement and the 'vibrational"
displacement.

Therefore, if one has an error in {xP} one necessarily affect the
accuracy of all three parts. For this reason one prefers the so called
"acceleration method". Basically this approach is capable of separating

the static and rigid body parts from the '"vibrational displacement. As

a consequence one only makes errors in the 'vibrational' part which often
is the smallest part of the displacement vector §xp{- Such an

"acceleration' approach which is consistent with modal synthesis
techniques was developed by Hruda and Jones.[53]

Recalling Equation (83) we can write

pxob = [1p] 153} + (1) ! (100)

so that from Equation (99) we obtain

(R - Um0 (8 + [, 207,] D 554 (Lo
From the bottom row of Equation (86) we obtain
EAIR -y (RS FE TR €N T ) BT

and from the second row Equation (86) we obtain

-1/ . 2
[0 = [TggT oty 1& [TB]T{FBf - [rgy ] g - [rppmp 1 i) ) noy

28



Expressions (102) and (103) can now be substituted into Equation
(101) yielaiag an equation for {quf in terms of accelerations. Many of
the matrix multiplications involved in Equations (101-103) can be
simplified by using a unit load solution, which is a feature of mrot
finite element programs

After this, it is possible to introduce cantilevered modes for the
booster and the payload(s) and truncate these modes according to a preset
cut-off frequency. In Chapter II we shall discuss the load calculation
procedure in more detail.
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5. Assessment

There are very few publications dealing with the comparison of the
different full-scale payload integration methods. In this section we
shall discuss two such studies., A study by R. Hruda shows that
the residual mass and flexibility approcach is one of the most effective
in terms of cost, convenience and accuracy. The Craig/Bampton technique
using interface payload(s) i: also one of the best techniques.

As a test structure, Hruda used two planar trusses coupled together
by a statically indeterminate interface (Figure 2). Five different
techniques were compared to the exact solution, i.e., the solution in the
discrete time domain &s discussed in Section 3a.:

1. Hruda/Benfield Technique - (Section 3e.): inertial coupling of
truss-2 constrained modes onto free-free modes of truss-1 which
was mass and stiffness loaded at its truss-2 interface
degrees-of-freedom by the interface properties of truss-2. (IMSL)

2. Craig/Bampcon Technique (modal verson of Equation (86)):
inertial coupling of truss-1 and truss-2 constrained modes onto
a free~free modal representation of the interface
degrees—of-freedom. (I/F)

3. MacNeal Techniqu:: residual flexibility approach of coupling
truss-2 constrained modes onto free-free modes of truss-1 which
creates stiffness coupling (residual mass not included). (RFSWOM)

4. Rubin Technique: (the residual mass and flexibility technique -
secton 3d.): coupling of truss-2 constrained modes ounto
free-free modes of truss-1 which yields only inertial coupling,
and, by consistent application to the mass and stiffness terms
in the equations of motion, yields both residual stiffness and
residual mass terms. (RFIWM)

5. Rubin Technique but without residual mass constributien for
truss-1.

The truss problem as illustrated in Figure 2 represents a
planar problem with three rigid body degrees of freedom (two
translational, one rotational). Each pinned joint has two
translational degrees of freedom. The interface is statically
indeterminate becau- . there are six interface degrees of
freedom. The heavy masses (asymmetric with respect to
interface) are added to produce interface distortion. The
forcing function is a ramp function. (RFIWOM)

The "exact' results, against which all comparisons were made,
were obtained by extracting eigenvaluas, eigenvectcrs, and loads

directly from « finite element discrete/physical model using no
modes at all.
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i.e,

Five different cases we investigated
EXACT: Discrete modal 70 DOF
CASE A: Modully coupled, 70 modes retained (=100Z)
CASE B: Modally coupled, 50 m-“es retained (=71%)
CASE C: Modally coupled, 32 modes retained (=462%)
CASE F: Modally coupled, 19 modes retained (=27%)

Hruda used the following comparison values:
Frequencies: Percent error against the 'exact" solution

Modes: An error vector is formed(®y- ¢;)and its
norm is calculated (which is defined as the Roo*
Square Sum of the the elements of the vector);
the comparison value is then defined as the norm
of the error divided by the norm of the
base/exact mode. Note that the norms are based

on the modal amplitudes of all degrees of freedom
from the coupled system.

Loads: Loads were calculated at the truss interface on
both the truss-l1 and truss-2 joints. A percent
error of the absolute value of the lazgest
{»‘ther maximum or minimum) value from a given
case against the absolute value of the largest
value from the exact solution.,

wy = Wg
Frequency comparison value = —oT % 100
E
. RSS ( 2 ¢E )
Mode comparison value = —_— x 100
RSS ¢
E
: Ly ~ g
Load cowparison value = — ¥ 100
E

where E = Exact, and N = Case being compared.
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The results are presented in Tables 1-12

For the 100% case-A, the MacNeal technique requires the inversion of the
residual flexibility matrix to obtain & "residual stiffness'". When
attempting to retain all (100%) of the modes, this residual flexibility
matrix is a function of the interface highest frequen:y mudal amplitudes
which can cause an ill-conditicned matrix (as in the preseat case).
Since this is an unrepreseatative case, it should not be deduced that
this is an unacceptable technique. As can be seen in succeeding cases,
where more residual wmodes are available, the MacNeali technique falls into
line with other techniques. Note that in cases B, C, and F, in both the
frequency and mode shape cowmparisons, that the Maciieal and the Rubin
technique without residual mass are identical, ther~by numerically
s.pporting K. Coppolino's contention that these two techniques are
equivalent for modal synthesis. 1In comparing the loads 1t is seen that
the MacNea:. column for case-A reflects the propagation of the
ill-conditioning mentioned ear_.er. Loads were calculated by the mndal

acceleration technique (Section 4) for all methods except for the MarNeal
technique.

Due to the stiffness coupling involved in the MacNeal method, a
complete modal acceleration technique for calculating loads could not be
used, thereforz. the modal displacement techniques of calculuting loads
was used. Becsuse of this, the larger loads inaccuracies for “his .nethod
must be attribuled to the method of loads calculation and not te the
method itself.

In conclusion we can state that methods 1 through 5 are acceptable.
However, the Rubin Technique (Residuai Mass and Stiffner-: Appvoazb) seems
to outweigh the other approaches in terms of cost - 4 ‘uience.

Again, it should be noted that this method does rotc - an’ knowladge
of payload properties which makes it very valuable for analy.i: o/!
STS-applications.

| Wl N

+ \ f i | 7\L
Truss 1 Touss 2
{Booster B) (Pavioad P)

Figure 2 Structure Used for Comparing Coupling Techniques

ORiGi/iL PATE i~
OF POOR QUALITY
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. ORIGINAL |
Table 1: Frequency Comparison OF POOR QU |-
Case A = 100X of Available Modes QuaLiY
X Diff for Various Modal Coupling Tech

e B8 e VR SR T e T YL o WS W T G U S N S S A8 T i T S P M A N S 40w AR L D 4B WP~ e e S

Mode Exact Freq
No (Hez) IMSL 1/F RFSWOM RF IWM RFIWOM
4 .76 -.00 -.00 -49.17 -.00 -.00
S 1.75 =, 00 -.00 6.75% -.00 .00
6 2.84 -.00 -.00 -21.81 -.00 -.00
7 3.08 -.00 -.00 -3.63 -.00 .00
8 3.80 -.00 ~-.00 -9.24 -.00 .00
9 bH.62 -.00 -.00 -16.39 -.00 .00
10 5.11 -.00 -.00 ~24.,08 -.00 .00
11 5.50 -.00 -.00 ~6.02 -.00 .00
12 5.81 -.00 -.00 ~-3.31 -.00 .00
13 7.6¢ .00 -.00 ~6.08 -.00 .00
14 8.69 -.00 -.00 -.60 -.00 .00
15 9.14 -.00 -.00 -3.32 -.00 .00
16 9.42 -.00 -.00 ~1.76 -.00 .00
17 9.73 -.C0 -.00 -.92 -.00 LU0
18 9.85 -.00 -.00 -.98 -.00 -.00
19 10,36 -.00 -.00 -1.36 -.00 .00
20 10.43 -.00 -.00 -.33 -.00 .00
21 10.79 -.00 ~-.00 -2.99 -.00 .00
22 10.90 -.00 -.00 -2.55 ~-.00 .00
23 11.37 -.00 -.00 -1.8% -.00 00
24 11,49 -.00 -.00 .80 ~-.00 00
25 11.78 -.00 -.00 .39 -.00 )
26 11.96 -.00 -.00 -. 12 -.00 V]
27 12.03 -.00 -.00 .19 -.00 .00
28 12,20 ~.00 -.00 <40 -.00 .00
29 12.43 -.00 -.00 .12 -.00 .00
0 12.50 -.00 -.00 5.58 -.00 .00
31 12.75 -.00 -.00 4.00 -.00 .00
32 13.29 -.00 -.00 2.54 -.00 .00
33 13.51 -.00 -.00 3. 12 -.00 .00
34 14.22 -,00 -.00 -.19 -.00 .00
35 14.53 -.00 -.00 .31 -.00 .00
36 14.86 -.0n -.00 -.11 -.00 .00
37 15.19 -.00 -.00 1.59 -.00 .00
38 15.54 ~.00 -.00 1.23 -.00 .00
19 15.69 -.00 -,00 2.5¢ -.0G .00
40 16.16 -.00 -.00 .95 -.00 .00
41 16.17 -.00 -.00 £6 -.00 00
42 16.28 -.00 -.00 3.34 -.00 .00
43 16.86 -.00 -.00 b -.00 .00
44 17.07 ~.00 -.00 W21 -.00 .00
45 17.117 -.00 -.00 5.12 -.00 .00
46 18.17 - .00 -.00 .03 -.00 .00
47 18.17 -.N00 -.00 10,47 -.00 .00
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Table 1: Frequency Comparison:(Concl)
Case A = 100% of Avaiiable Modes
% Diff for Various Modal Coupling Tech

Mode Exact Freq

No (Hz) IMSL 1/F RFSWOM RFIWM RFIWOM
48 20.11 -.00 ~-.00 .81 -.00 .00
49 20.27 -.00 -.00 3.02 -.00 .00
50 21.11 -.00 -.00 .14 -.00 .00
51 21.15 -.00 -.00 .08 -.00 .00
52 21.26 -.00 -.00 .07 -.00 .00
53 21.29 -.00 -.00 .53 -.00 .00
54 21.45 -.00 -.00 .02 ~.00 .00
55 21.47 -.00 -.00 2.91 -.00 .00
56 22.06 -.00 -.00 .45 -.00 .00
57 22.15 -.00 -.00 2.18 -.00 .00
58 22.63 -.00 -.00 5.09 -.00 .00
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Table 2: Fr uency Comparison
Case B = 71& Available Modes
Z Diff for Varic., Modal Coupling Tech

- A T R A . D " W = A - D - > . - " e~ —— ——— — . " S . n T = S e S -

Mode Exact Freq
No (Hz) IMSL I/F RFSWOM RFIWM RFITWOM
4 .76 .00 .00 .00 .00 .00
5 1.75 .00 .o¢ .00 .00 .00
6 2.84 .00 .00 .00 .00 .02
7 3.08 .00 .00 .00 .00 .06
8 3.80 .00 .00 .00 .00 .00
9 4.62 .00 .00 .04 .00 .04
10 5.11 .00 .00 .00 .00 .00
11 5.50 .00 .00 .05 .00 .05
12 5.81 .04 .05 .03 .03 .03
13 7.60 .00 .00 .21 .00 .21
14 8.69 .02 .02 .03 .01 .03
15 9.14 .04 .06 .12 .04 A2
16 9.42 .01 .01 .01 .00 .01
17 9.73 .01 .02 .02 L0l .02
18 9.85 .03 .04 .03 .03 .03
19 10.36 .01 .01 .06 .0l .06
20 10.43 .00 .00 .01 .00 .01
21 10.79 .03 .05 .04 .02 .04
33 10.90 .03 .03 .04 .02 .04
23 11.37 .00 .00 .03 .00 .03
24 11.49 .00 .01 .05 .00 .05
25 11.78 .03 .03 .08 .03 .08
26 11.96 .08 .09 .08 .07 .08
27 12.03 .02 .03 .04 .02 .04
28 12.20 .13 .13 .10 .10 .10
29 12.43 .01 .01 .02 .09 .02
30 12.50 .03 .09 .07 .03 .07
31 12.75 .07 .07 .08 .06 .08
32 13.29 .04 .05 .06 .02 .06
33 13.51 .08 .07 .07 .05 .07
34 14,22 .13 .13 .78 .09 .78
35 14.53 .09 .13 .29 .07 .29
36 14.86 .01 .01 .17 .01 W17
37 15.19 .06 .07 R .05 R
18 15,54 L0l .0} 1.17 A 1.17
39 15.69 .02 .02 l.61 .03 1.0l
40 12.16 .01 .02 .13 .09 .13
41 16.17 .07 .08 2.58 .12 2.68
42 16.28 .37 AN 3,88 .34 3.88
43 16.86 .13, .12 7.73 .25 7.73
IAA 17.07 L0k .10 18.51 P.52 18.51
45 17.17 1.00 1 .00 00 .94 .80 60 .94
46 18.17 .02 .02 72.29 2.54 72.29
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Table 2:

Frequency Comparison (Concl)
Case B = 71X of Available Modes
X Diff for Various Modal Coupling Tech

- TE R = . 5 0 S T W S WS Y W T S TR S v R D W W A e W S A W L R S M Gy s T W A WL WS YR W A wm e T R W v W T WS W e W e

Mode Exact Freq

No (He) IMSL 1/F RFSWOM RF1WM RFIWOM
'Y 18.17 .03 04 122.22 11.51 122,22
48 20.11 .07 .09 473.05 1.55 473,05
49 20,27 31 .3 962.70 8.65 902.7¢
50 21,11 4.07 4.20 536.67 19.40 536.07
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Table 3: Frequency Comparisoa
Case C = 46X of Available Modes
X Diff for Various Modal Coupling Tech

Mode Exact Freq
No (Hz) IMSL 1/F RFSWOM RFIWM RF IWOM
4 .76 .00 .00 .02 .00 .02
5 1.75 .02 .00 .0c .00 .00
6 2.84 .04 .02 .12 .01 12
7 3.08 .0l .00 .28 .00 .28
8 3.80 .02 .00 .00 .00 .00
9 4.62 12 .05 .26 .02 .28
10 5.11 .02 .01 .0l .00 .01
11 5.5C .26 .10 .35 .05 .35
12 5.81 .16 .24 A2 .08 .12
13 7.69 .03 .04 1.55 .06 1.55
14 8.69 14 .22 A7 .08 .17
15 9.14 .32 .33 .4l 17 Al
16 9.42 .05 .07 .07 .01 .07
17 9.73 .13 .18 .34 .08 .34
18 9.85 .30 .27 .31 .18 .31
19 10.36 A1 .11 .51 A2 .51
20 10.43 .09 .04 .45 .02 .45
21 10.79 17 .33 .73 .11 .73
22 10.90 N3 .42 3.43 .55 3.43
23 11.37 .06 .04 3.23 1.49 3.23
24 11.49 .04 11 5.14 3.66 5.14
25 11.78 .17 .17 5.52 2.76 5.52
26 11,96 .40 .90 4.79 3.70 4.79
27 12.03 .30 3.16 53.65 4,71 53.65
28 12.20 1.73 2.35 77.63 3.91 77.63
79 12.43 41 4,66 80.30 14.58 80.30
30 12.50 1.94 12.32 143.04 22.38 143.04
31 12.75 3.52 14.90 167.76 29.91 167.76
32 13.29 11.885 61.19 530.91 63.27 630.19
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Table 4:

Frequency Comparison
Case F = 272 of Available Modes
Z Diff for Various Modal Coupling Tech

Mode Exact Freq
No (Hz) IMSL 1/F RFSWOM RFIWM RFIWOM
4 .76 .0C .00 .05 .00 .05
5 1.75 .02 .00 .02 .00 .02
6 2.84 .06 .06 .31 .03 .31
7 3.08 .07 .00 4.32 .19 4.32
8 3.80 .03 .01 .03 .00 .03
9 4.62 .18 .14 .71 .08 .71
10 5.11 .05 .03 .03 .01 .03
11 5.50 46 .34 1.64 .49 1.64
12 5.81 1.03 1.13 23.29 4.70 23.29
13 7.69 .14 .16 15.39 8.20 15.39
14 8.69 1.05 1.14 45.28 1.30 45.28
15 9.14 1.20 6.85 84.44 8.49 84 .48
16 9.42 .37 27.17 98.00 27.57 98.00
17 9.73 2.23 36.67 97.08 36.41 37.08
18 9.85 18.25 37.17 203.74 37.43 203.74
19 10.36 22.07 103.62 279.52 105.23 279.52
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Table 5: Mode Shape Comparison
Case A ® 1002 of Available Modes
X Diff for Various Modal Coupling Tech.

- - —— — - - A s T p e e - - T = -

Mode Exact Freq
No (uz) IMSL 1/F RFSWOM RFIWM RFIWOM
4 14.84 .00 .00 104.09 .00 .00
5 13.95 .00 .00 92.76 .00 .01
6 13.45 .00 .00 104.91 .00 .01
7 13.70 .00 .00 94 .49 .00 .02
8 12.23 .00 .00 132.95 .00 .02
9 11.21 .00 .00 100.73 .00 .03
10 9.54 .00 .00 153.35 .00 .05
11 8.75 .00 .00 104.39 .00 12
12 13.25 .00 .00 129.05 .00 .08
13 10.51 .00 .00 186.06 .00 .18
14 11.49 .00 .00 96.78 .00 .04
15 11.24 .00 .00 102.21 .00 .16
16 14.5 .00 .00 71.19 .00 .07
17 13.16 .00 .00 141.80 .00 .09
18 13.99 .00 .00 90.01 .00 .02
19 15.47 .00 .00 81.01 .00 .12
2¢ 13.49 .00 .00 99.38 .00 .05
21 12.74 .00 .00 136.40 .00 .13
22 15.25 .00 .00 138.19 .00 .15
23 16.56 .C9o .00 132.20 .00 .15
24 18.06 .00 .00 100.18 .00 .25
25 17.70 .00 .00 132.72 .00 .18
26 17.29 .00 .00 142.58 .00 .17
27 16.94 .00 .00 68.01 .00 .09
28 17.58 .00 .00 69.8¢ .00 .03
29 17.06 .00 .00 41,89 .00 .19
30 16.31 .00 .00 138.22 .00 .28
31 15.86 .00 .00 149,30 .00 .01
32 18.16 .00 .00 138.85 .00 .08
33 16.92 .00 .00 148.49 .00 .11
34 15.21 .00 .00 91.84 .00 .84
35 18.67 .00 .00 75.41 .00 .52
36 18.48 .00 .00 49.75 .00 .36
37 17.23 .00 .00 89.32 .00 .16
38 18.14 .00 .00 145.84 .00 1.36
39 18.12 .00 .00 146 .47 .00 .72
40 18.82 .00 .00 160.19 .00 .51
41 19.22 .00 .00 126.88 .00 .56
42 15.63 .00 .00 162.42 .00 .90
43 18.47 .00 .00 124,22 .00 1.12
44 19.44 .00 .00 61.05 .00 .45
45 16.54 .00 .00 135.41 .00 .84
46 18.17 .00 .00 54.79 .00 .32
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Table 5: Mode Shape Comparison (Concl)
Case A = 100X of Available Modes
% Diff for Various Modal Coupling Tech.

Mode Exact Freq

No (HZ) IMSL 1/F RFSWOM RFIWM RF IWOM
47 18.33 .00 .00 142.35 .00 .30
48 18.25 .00 .00 145.79 .00 2.22
49 19.16 .00 .00 139.28 .00 .27
50 19.29 .00 .GO 65.342 .00 2.16
51 19.51 .00 .00 62.72 .00 1.22
52 19.17 .00 .00 52.42 .00 3.43
53 18.89 .00 .00 105.50 .00 4.69
54 19.52 .00 .00 38.21 .00 1.48
55 19.13 .00 .00 103.39 .00 2.35
56 11.17 .00 .00 161.11 .00 5.68
57 19.81 .00 .00 11.29 .00 .17
56 19.81 .00 .00 135.33 .00 .09
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Table 6: Mode Shape Comparison
Case B = 712 of Available Modes
X Diff for Various Modal Coupling Tech.

Mode Exact Freq
No (Hz) IMSL 1/F RFSWOM RFIWM RF IWOM
4 14.84 .00 .00 .00 .00 .00
5 13.05 .02 .01 .01 .01 .0l
6 13.45 .04 .03 .18 .02 .18
7 13.70 .07 .01 .23 .01 .23
8 12.23 .08 .06 .06 .05 .00
9 11.21 A2 .08 .33 .00 .33
10 9.54 .16 .18 .16 .15 .16
11 8.75 .22 .22 .66 .14 .66
12 13.25 .80 .89 .76 .70 .76
13 10.51 .30 41 1.78 .27 1.78
14 11.49 .91 1.21 .88 .57 .88
15 11.24 1.75 2.05 2.53 1.67 2.53
16 14.55 .61 71 .95 .34 .95
17 13.16 1.02 1.10 1.02 .70 1.02
18 13.99 1.52 1.67 1.63 1.50 1.63
19 15.47 1.28 1.03 1.86 .17 1.86
20 13.49 1.30 1.03 1.21 .15 1.21
21 12.74 1.54 2.02 2,20 1.23 2.20
22 15.25 1.93 1.84 1.98 1.50 1.98
23 16 .56 .38 .62 3.31 .12 3.31
2% 18.06 .32 .81 3.56 .31 3.56
25 17.70 3.44 3.63 4.94 3.43 4.94
26 17.29 9.71 9.84 8.91 8.36 8.91
27 16 .94 8.37 8.24 7.18 7.04 7.18
28 17.58 7.16 7.15 6.09 5.94 6.09
29 17.06 1.11 2.22 3.50 .79 3.50
30 16.31 3.83 5.48 5.80 3.52 5.80
31 15.88 3.90 3.89 4.95 3.86 4.95
32 18.16 2.81 2.72 4.45 2.02 4.45
33 16.92 4.06 3.29 3.91 2.92 3.91
34 15.21 6.36 4.34 25.34 4.43 25.34
35 18.67 5.53 5.12 22.71 .42 22.71
36 18.48 1.64 1.62 1£.67 (s79 16.67
37 17.23 4.65 5.05 12.42 3.98 12.42
38 18.14 1.43 2.71 71.43 6.38 71.43
39 18.12 2.45 2.06 189.04 4.32 189.04
40 18.82 35.48 19.60 104.85 60.42 104.85
41 19.22 39.52 27.36 128.81 60.10 i28.81
42 15.63 26.78 27.93 126.75 28.17 126.75
43 18,47 9.51 9.90 140.52 38.29 140.52
44 19.44 14.36 15.85 144,04 126.68 144.04
45 16.54 24,08 24.65 213.55 142.78 213.55
46 18.17 3.25 4.86 150.22 123.17 150.22

41



Table 6:

Mode Shape Comparison (Concl)
Case B = 7171 of Available Modes
% Diff for Various Modal Couplimg Tech.

e o e ¢ — s o = o A e ey D o ot e o o S T . e S e VR s e o oy S 2 v = -

Mode Exact Freq

No (HZ) IMSL 1/F RFSWOM RFIWM RFIWOM
47 18.33 4.54 5.77 250.51 144.13 250.51
48 18.25 62.46 70.50 553.15 77.72 553.15
49 19.16 57.97 66.55 965,00 130.07 985.90
50 19.29 114.23 116 .94 930.68 128.01 930.68
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Table 7: Mode Shape Comparison
Case C = 46X of Available Modes
% Diff for Various Modal Coupling Tech.

Mode Exact Freq
No (HZ) IMSL 1/F RFSWOM RFIWM RFIWOM
4 14.84 .02 .02 .03 .02 .03
5 13.95 .18 .04 .03 .03 .03
6 13.45 A .45 .49 .31 .49
7 13.70 .31 .10 .55 .13 .55
8 12.23 .54 .23 .18 .16 .18
9 11.21 .1.59 1.30 2.00 .90 2.00
10 9.54 1.10 .74 4l .36 .4l
11 8.75 2.79 3.01 3.61 1.79 3.61
12 13.25 2.50 3.48 2.42 1.79 2.42
13 10.51 1.92 2.35 9.62 2.83 9.62
14 11.49 4.84 7.14 5.19 3.88 5.19
15 11.24 8.72 9.37 8.63 5.92 8.63
16 14.55 3.33 4.77 3.71 1.62 3.71
17 13.16 9.03 90.46 13.85 5.90 13.85
18 13.99 11.17 10.37 13.28 7.67 13.28
19 15.47 12.62 11.13 68.73 9.12 68.73
20 13.49 13.23 10.81 81.34 7.28 81.34
21 12.74 7.56 16.01 46.68 10.40 46 .68
22 14.25 16.60 19.11 54.62 20.68 54.62
23 16.56 6.01 5.57 123.28 97.95 123.28
24 18.06 4,87 9.79 129.15 145.42 129.15
25 17.70 17.82 16.45 135.79 155.65 135.79
26 17.29 68.71 127.43 150.09 124.74 150.09
27 16.94 72.98 144.11 134.45 120.45 134.45
28 17.58 103.74 98.65 152.44 150.49 152.44
29 17.06 81.82 139.33 166.49 128.91 166 .49
30 16.31 110.83 130.70 145.30 111.59 145.30
31 15.86 95.31 153.24 243.62 141.77 243.62
32 18.16 101.15 122.19 695.80 128.54 695.89
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Table 8: Mode Shape Comparison
Case F = 27X of Available Modes
%2 Diff for Various Modal Coupling Tech.

e B . S g o . o o i B A Y D o o o D G S v g e e B o e P e T o A W G s v S T

Mode Exact Freq

No (HZ) IMSL I/F RFSWOM RFIWM RFIWOM
4 14.84 .04 .05 <06 .03 .06
5 13.95 .24 .07 .26 .06 .26
6 13.45 .71 .89 2.63 .71 2.63
7 13.70 1.02 .20 8.69 2.36 8.69
8 1~.23 .74 .39 1.48 .42 1.48
9 11.2? 2.58 2.75 4.62 1.96 4.62
10 9.54 2.84 2.19 1.40 .98 1.40
11 8.75 10.05 9.34 38.19 23.43 38.19
12 13.25 10.96 11.05 65.52 28.35 65.52
13 10.51 7.03 7.59 128.49 53.35 128.49
14 11.49 29.41 33.79 159.45 43.11 159.45
15 11.24 33.59 66.95 167.22 88.27 167.22
16 14.55 30.24 113,08 161.12 119.44 161.12
17 13.16 111.59 138.72 161.33 140.08 161.33
18 13.99 123.87 130,93 148.55 132.90 148.55
19

15.47 148.78 127.29 379.09 127.01 379.09
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Table 9
Comparisons of Maximum Absolute Values of Interface Loads
Case A = 100X of Available Mod=e

Percent Difference - ABS. Max. Loads

Load No. Exact Load (lbs) IMSL 1/F RFSWOM RFIWM RF IWOM
1 ~481.999 0. -.00 3419.56 .00 -.05
3 -202.138 0. -.00 10154.67 .00 -.08
5 -498.819 0. .00 3957.31 -.00 .11
7 474.713 0. -.00 2208.71 .00 -.03
9 191.901 0. -.00 22733.86 .00 -.02
11 486.870 0. .00 17322.92 .00 .03

IMSL = Inertial Coupling W/ Mass and Stiffness Loading

I/F = Interface Method of Inertial Coupling

RFSWOM = Residual Flexibility with Stiffness Coupling, without Residual Mass
RFIWM = Residual Flexibility with Inertial Coupling, with Residual Mass
RFIWOM = Residual Flexibility with Inertial Coupling, without Residual Mass
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Table 10
Comparisons of Maximum Absolute Values of Interface Lcads
Case B = 71% of Available Modes

Percent Difference - ABS. Max. Loads

Load No. Exact Load (1bs) IMSL 1/F RFSWOM RFIWM RFIWOM
1 -481.999 .10 -.00 2.08 .10 -.38

3 -202.138 .26 .27 2.62 27 .26

5 -498.819 .12 .13 -.13 14 -.20

7 474.713 .17 .15 -1.36 .18 .22

9 191.901 .15 .18 .26 .13 ~-.24
11 486 .870 .19 .19 2.00 .24 ~-.10

MSL = Inertial Coupling W/ Mass 2nd Stiffness Loading

+/F = Interface Method of Inertial Coupling

RFSWOM = Residual Flexibility with Stiffness Coupling. without Residual Mass
RFIWM = Residual Flexibility with Inertial Coupling, with Residual Mass
RFIWOM = Residual Flexibility with Inertial Coupling, without Residual Mass

46



Table 11
Comparisons of Maximum Absolute Values of Interface Loads

Case C = 46% of Aveilable Modes

Fercent Difference - ABS. Max. Loads

Load No. Exact Load (1bs) IMSL 1/F RFSWOM RFIWM RFIWOM

1 -481.999 -1.,32 ~}1.29 ~4.07 -1.09 .29

3 -202.138 2.34 2.13 3. 1o 2.4 ). 19

5 -498.819 .25 .39 -7.3% .45 Y

7 474,713 ~1.48 -1.4% 2.93 -1.36 -.34

9 191.901 .00 -.12 -25.44 -.07 -1.48
11 486.870 ~.85 -.71 ~-3.83 ~.78 - 71

IMSL = Inertial Coupling W/ Mass and Stiffness Loading
I/F = Interface Method of .nertial Ccupling
RFSWOM = Residual Flexibility with Stiffness Coupling, without Residual Mass
RFIWM = Residual Flexibility with Inertial Coupling, with Residual Mass

RFIWOM = Residual Flexibility with Inertial Coupling, without Residual Mass
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Table 12

Comparisons of Maximum Absolute Values of Interface Loads
Case F = 27X of Available Modes

Percent Difference - ABS. Max. Loads

Load No. Exact Load (1bs) IMSL I/F RFSWOM RFIWM RF IWOM
1 -481.999 -2.45 -2.88 6.38 -6.66 ~2.60
3 -202.138 3.04 -2.85 5.68 -10.99 .27
5 -498.819 -2.24 -2.61 8.02 ~4.49 -1.85
7 474.713 -3.82 -4.44 10.81 -8.79 -10.31
9 191.901 -2.79 -.54 21.52 -7.54 ~14.78

11 486 .870 -.08 -.48 17.06 -4.28 -7.60

IMSL = Tnertial Coupling W/ Mass and Stiffness Loading

I/F = Intiérface Method of lnertial Coupling

RFSWOM = Residual Flexibility with Stiffness Coupling, without Residual Mass
RFIWM = Residual Flexibility with Inertial Coupling, with Residual Mass
RFIWOM = Residual Flexibility with Inertial Coupling, withuut Residual Mass
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Another comparison study of modal synthesis methods was conducted by
W. Benfield, C. Bodley and G. Morosow, Here are a few extracts
from that publication.

Some of the earliest formal documentation on modal synthesis is
accredited to Hunn and Gladwell. Although their methods yield good
accuracy, they are restricted to structures with statically
determinate interfaces and have been somewhat overshadowed by more
recent developments. In this paper, only methods applicable to
redundant interface conneciions are compared.

Hurty developed the first modal synthesis method capable of analyzing
structures with redundant interface connections. In this method, the
component vibration modes are determined with all interface
coordinates fixed, and are thus callled fixed-constraint modes, and
fixed-constraint, natural vibration modes are used as the generalized
coordinates to determine the modes of the system.

Bajan and Feng and Craig and Bampton introduced the concept of using
only constraint modes, thus eliminating the need to distinguish
rigid-body modes and redundant constraint modes. The
fixed-constraint, natural-vibration modes of each component are
determined in the same manner as in Hurty's method. The constraint
modes and fixed-constraint, natural-vibration modes are then used as
the generalized coordinates to determine the system modes.

Goldman developed a method of vibration analysis using dynamic
participating. In his method, the component vibration modes are
free-free, rather than fixed-constraint mndes. Rigid body modes and
selected component vibration modes are used to solve the
interconnection problem. This eliminates the need for constraint
modes. The component free-free vibration modes are then used as
generalized coordinates to determine the modes of the system.

Hou has described a method for mcdal synthesis that also uses
free-free compecnent vibration modes. Constraint modes are not used.
Selected component modes are used to connect the components
together. These modes then become dependent coordinates thus
reducing the number of independent, generalized coordinates by an
amount equal to the number of system interface coordinates.

Benfield and Hruda presented a method of component mode substitution
using either free-free or constrained component modes called branch
modes. Constraint modes are used for constrained components, but
these are reduced to dependent coordinates rather than carried in the
solution as independent coordinates. Only the component vibration
modes are used as generalized coordinates to determine the system
modes. In addition they also presented the concept of using

interface-loaded component modes to improve the accuracy of the
solution.
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In general, the methods that used constrained-component vibration
modes produced more accurate results than those that used free-free
vibration modes. Furthermore, methods that used component mass and
stiffness matrices were more accurat2 than those that did not.

The features of the methods can be summarized as follows.

Method 1 - Benfield and Hruda, Free-Free Component Modes

- Less ~ccurate
- Uses free-free component modes

- Easy to use, since no constraint modes or matrix inversions are
used.

- Requires mass and stiffness matrices for the components.

Method 2 - Benfield and Hruda, Free-Free Component Modes, with
Interface Loading

- Good accuracy
- Uses free-free, interface-loaded component modes

- Requires constraint modes or reducing transformations for each
component.

- Requires mass and stiffness matrices for the corponents.

- Requires interface loading of component modes. As a result,
other attached components affect the component modes.

Method 3 - Benfield and Hruda, Constrained Component Modes

- Good accuracy

- Uses constrained—-component branch modes.

- More difficult to set up for many components
- Requires constraint modes for each component

- Requires mass and stiffness matrices for the components

50



Method 4 ~ Benfield and Hrude, Constrained Component Modes with

Interface Loading

One of the most accurate

Uses constrained-component branch modes

More difficult to set up for many components

Requires constraint modes for each component

Requires mass and stiffness matrices for the cowponents

Requires interface loading of component modes. As a result,
other attached components affect the component modes.

Method 5 - Hurty

Onz2 of the most accurate
Uses fixed interface component modes
Requires mass and stifness matrices for the components

System rigid-body and redundant interface generalired
coordinates must be retained as additiunal degrees of freedom in
the modal solution. For structures having a large number of

interface coordinates, the number of component modes used may be
limited.

Method 6 - Bajan and Feng, and Craig and Bampton

One of the most accurate

Uses fixed-interface component modes

Requires constraint modes. This method is more convenient to
use since it is not necessary to identify statically determinate
and redundant interface coordinates.

Requires mass and stiffness matrices for the components.

System interface generalized coordinates must be retained as
additional degrees of freedom in the modal solution. For

structures having a large number of interface connec.iors, the
number of component modes used may be limited.
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Method 7 - Goldman

- One of the least accurate.
- Uses free-free component modes.

- Modal selection is important. A matrix inversion is required,
and the matrix must have the same size as the number of
interface coordinates. Since an ill-conditioned inversion may
result from improperly selecting the component modes, it is
desirable to have as few interface coordinates as possible.

- The modal stiffness matrix is nonsymmetric

- Does not require mass and stiffness matrices for the
components, Thus, system modes may be synthesized using only
the component modes.

- The first n modes in the system eigenvalue-eigenvector solution
are not usable. (Here n is equal to the number of system

interface connections).

Method 8 - Hou

- One of the least accurate
- Uses free-free component modes

- Modal selection is important. A nonsymmetric matrix inversion
is required, and the matrix must have the same size as the
number of interface connections. An ill-conditioned inversion
may result from improperly selecting component modes. Thus, it
is desirable to have as few interface coordinates as possible.

- Does not require mass and stiffness matrices for the
components. Therefore, system modes may be synthesized using
only the component modes.

- The rumber of component modal coordinates used in the system
modal solution is reduced by n (where n is equal to the number
of system interface coordinates).
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B. SdORT-CUT TECHNIQUES

l. Introduction

In Section A we discussed several techniques to obtain the response
of a booster/payload system. All these techniques necessitate the
solution of the coupled booster/payload equations, i.e., they are
“full-scale' methods. As we pointed out before, this solution is quite
expensive, especially if it has to be repeated several times, for example
during a design effort. Although mass and stiffness changes during a
design effort are often small, current practices used to design nayload
structures require a new "full-scale" solution every time such small
changes in the payload are made. A similar situation exists in the case
of payloads that are designed for multiple flights with moderate
configuration -changes.

A need exists for the development of “short-cut" methods. The term
"short-cut” method implies that the method should be able to evaluate
small changes in the payload in a relatively short time. First, a
short-cut method should avoid the direct solution of the coupled
equations of the booster/payload system. Secondly, it should avoid as
much as possible the interfacing between different organizations. This
means that one should strive towards as much independence for the payload
design organization as possible.

The objective then of Section B is to prusent several of the most
promising of these short-cut methods. The first of these methods will be
discussed in the next section.

2. The Perturbation Technique

In this section we shall discuss a short-cut methed which is based on
a well known perturbation technique. We shall first discuss the
perturbation technique in general terms and then apply it to the
particular problem of a booster/payload system.

Let us consider a set of eguations of motion of a certain structure,

ENEET + Ik 1{xt = {F} (104)

where [My] and [Kg] are the mass and stiffness matrix of the
structure, respectively. The vectors {x} and {F} are the generalized
discrete displacement and force vectors. The eigenvalue problem
associated with Equation (104) can be written as

(‘“’é (3 + ["o]){%! = ol (105)
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The solution of this elgenvalue problem yields a modal matrix Fﬁol and
a diagonai eigenvalue materELJ J satisfying

(%] [Moltm = L1, [9] "1 04] - B2 (106)

Next, let us assume that the elements of [My] and [Kp] undergo
small changes, so that the new system of equations can be written as
follows

[ix} + [kDix} = {r) (107)
with
M) = [®] + oMy [xk] = [k + «[x] (108)
where £ is a small parameter such that
e ] = (] - [v]. elx] = [x] - [x] (109)

Note that the matrix differences on the rignt-hand sides of Equations
(109) are small, so that it is easy to determine a smell & so that [M;]
and [Ky] are of the same order of magnitude as [M], [Mp] and [K],

[Kyl.

The objective of the perturbation technique is to obtain a solution
for the new eigenvalue problem associated with Equation (107).

(-wz (] + [K])M - 4o} Loy

without actually solving Equation (110). To this end, let us write

(111)
{xf = {XO* + € {xl} + 52 {XZ} + ...
- 2
fod = fooh+ cfod + € fo,} + ... (112)
w = wy + € wl + €2 Wy +
(113)
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This can be done because of the small changes in [Mg] and [Kq] as
expressed in Equatiom (108). Also,

fab = {oob + e fa )} + & {q} + (114)

where {qp} and { q} are the normal coordinate vectors of the unperturbed
and perturbed system, respectively, i.e.

{x} = (114}

(115)
x} = [9,]{a.}
Fob = Lol b (116)
with
T T 2
1T 0e]=C1], (017 [x10e] (x10e] = [o7] (117)
First, let us substitute Equation (116) into Equation (107) and
premultiply by [#]T yielding
NN - T
fq} * £ d{a} = (1% {7} (118)

Substituting Equations (112), (113) and (114) into Equation (118) and
equating coefficiencs of like powers of & , we can write,

, ) T
fagh + [wg) {o5} = [¢] {F}

(119

. 2 T
{a;b + Lwp] {a,} = [¢)] {rd - 2 [wp) (o] faok

(120)

It s now possible to solve Equations (119, 120, etc.) in sequence.

The firat of Equations (119) represents the unperturbed equation of
woti»a, i.e., the modal form of Equation (104). This solution is
aval able or can be determined.

‘nce the vector {qq,

is determined one can solve Equation (120) if
Fpll and B~1] are known. The determination of these matrices is the
subject of the next paragraphr.

CF."G.',’\_.’/‘;;_ -
OF F00R .1}
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([“”0] +
(%] +

First, it is always possible to write [¥;] as a linear combination
of the eigenvectors [&dg],

(6,1 = [5] [o]

(121)

because FPOI is a complete set of vectors (i.e., they can be used as a
basis for a vector space). Note that [xX] represents the coefficient
matrix of Bbol in the linear combination and must still be determined.
To this end, let us introduce Equations (108), (112), (113) and (121)
into Equation (117), and only keep terms in=* and ',

T
e[éo] [a;I") ([MO + ¢ [MI],) ([tbo] + ¢ [¢0] [a])= [1]

ol 5) (%] *+ = (5]) (o + ¢ o] [a])([ b o)
R LAY A 4/ (123)

Equating coefficients of like powers in €' and €' we obtain from
kLquations (122-123)

(122)

T

o] +{e] =-1[%] ' M3 feo) (124)
2 Bo) (o] T L]+ (o] (o2 + [ogd [ [eg]

(125)
Equations (124-125) can now be solved for BPI] and [W]. This
enables use to solve Equation (120) for {ql}, so that from Equation
(114) we obtain the first order approximation
fa} = oo} + ¢ {q,} (126)

and from Equation (116) we obtain { x} where we use

Lo = [og) +e[e)] (127)

This perturbation technique can now be applied to a booster/payload
situation. The assumption is that only changes of order € are made in
the payload, i.e.,

PL) = o)+ cDGd L[] - k) ¢ (%) (128)

ARy -
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where [Mpgl and [Kpgl are the mass and stiffness matrices of the
unperturbed payload Pp. Let us write the mass and stiffness matrices
in Equation (25) for the perturbed payload P.

M+ i T, .
_____f-f‘lf_ T'ply Kg * TpkpTpy O
s | T T "l ————————
[TMPT BR'E: 0 L1l 4 (129)
PP P b tpptp TpKpTp

with

(7] = [Z | ip] » [8p] = *[KEN]-I[ Kgl} (130)

Using Equation (128) we can write [Sp] as

(5] - ‘<(K§3] ‘e [KNN]> ( Es 'Su) (131)

and, keeping terms in £ only, we obtain

(50 - ~([K:§J" SRR G J[“’)(D{SJ ‘e [%i) (32
-1 - - -
g G IR (U I SR G R e T R C)
[SP] i [SPO] .. [Spl] (133)
with -
o) = - Il [
(134)
[s < ppoq -1 -
PJ [KNN] r,ﬁsé] + [P()] t [K;N] [K; ] ot [K:?] (135)
It is now possible to write [Tp] as
[Tp] = [Tpo] toe [TPI] (136)
with
0 s 0 (137)
(el - [() Upo] ’ [Tpll ) [r) TP]]

(‘!' 170,34 -..,
($IN
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Finally we can write the mass and stiffness matrices of the coupled
booster/payload system as follows

M.] = [M(;()] e [MCl] L7 B keod * = [KCI] (138)

where C indicates Coupled. Matrices [Mc] and [K;] are given by
expressions (129). Taking into account Equations (128) and (136) we can
write

- ‘ T b g -
() = [_”.‘5_‘:_11:9'129fEQ_EEQ_TEQfEQ_} (e, ] - [_KB flvofrolvor D }
C ’ co :

T bT T
: KT
I MpoTpo 1 Tpo Mpolpo 0 Jpofeo’ro (139)
T T T T T
4 + +
TooMpoTe1 " TpoMp1Trot TP1 0 P01+ (TroMp1*Tr1Mpo’ fpo
M 22 [ e v v e i e i e e e e R S s e T <L . S S S e g, T o e e o
[ Cl T | T (140)
i
Ipo MpoTp1™MpyTpg) ' TpoMe1tpo
(141)
T T T
= + T 0
[fca] = | TroteoTer*TrotesTro!Ter ¥roTro!
)
oy
0 R T A RIS

where [Tpgl and [Tp;] are given by Equation (137). Equation (138) is
now equivalent to Equation (108) and the perturbation technique can be
applied.

Note that theoretically one can also obtain the higher-order
perturbations &7, £? , etc. But for all pratical purposes only &
perturbations are included. The question then is, how important &< , &
, etc. terms are. It is evident that Equationm (111) is only vaiid as
long as the asvmptotic expansion in £ does not break down, i.e., as long
as 2;‘{)(,_} <= ixcj» , etc. There are indeed cases where such an
asymptotic expansion breaks down. It is then necessary to introduce
other perturbation techniques (e.,g. Lighthill, multiple scales, etc). In
this connection it is important to recognize the fact that small changes

in the mass and stifness of the payload produce smgll changes ir the
eigenvalues but not necégsarily in the modes.

3
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3. The Base Drive Technique

In this section we shall discuss the Base Drive Technique as

developed by A. Devers, et.al. Let us first recall Equarion (91) in
partitioned form,

[11 MBIB]{:jSRi + [I}sKBIB]{;sR% = - [1T ) uJ 0

[t 135+ (o} 550 -+ [ ] (1500 i)

(142)

(143)
“BR
{x

-1 Mo ..B¥ .
[1BMBIB*1PMPTP] ( B LT;MPTP] {x bo- ['PKPIB] {XY'}

T ~p
- {TPMPIP] {XN} - [TBMBIB] { } [ K,T +T KT ] x BR} ) (144)
where we solved for{;?R} in Equation (144)

The payload designer is primarily interested in predicting the
response of the payload which is given by

f§ L. (LIS <
Y N R (145)
x; i 1

-p ;P
’_fﬂ_t . ’--ﬂ _________ (146)

RF

with

where {X } and {x

}must be computed from Equations (142-144) and {x
from Equat1on (90 §

The idea of a base drive short-cut method is to approximate{}iR} in
Equation (144) in such a way as to avoid the solution of the complete set
(142-144). To evaluate a particular short-cut mcihod, the approximation

-.R »
of{xI} must be compared to the exact value given by Equation (144).

A significant simplification of Equation (144) occurs when the
interface is statically determinate, i.e., when

rTBKBTB] B [%gKPTP] ) [0] (147)

This eliminates the dependence of {)( }on {xinf andfxf':f'and {x?}
becomes,

1

P I lT T ATIMC T ] (- [T'f,MPTP] LOFL - [p"‘p‘ ] FAR I OPR

- ['I”n B] {-HR} )
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A first possibility is to assume that the presence of the payload has
no effect on the response of the booster, i.e. {)( =< =40f. This
approach is ca:ied the Direct Base Drive Technique or Open Lo-p Base
Drive. Indeed if {XM}_.Zof then Equation (143) becomcs

[IEMPIP] bt + [IEKPIP] b =~ [IgMPTP} by d (149)

which means that the payload is "directly” drivewn at its base (i.e. its
interface with the booster B) by the force on the right hand side of
Equation (149). Theoretically, the Direct Base Drive Techinique assumes
there is no coupling at all, between the booster and the payload.
Pract1cally, it means that{ }tétﬂv?or that the feedback of the payload
is negligible. The condlcxons under which such an approx1mat10n is valid
is still an unanswered quection. The development of a criterion ot
validity of the use of the Direct Rase Drive Technique should be
considered.

4. The Impedance Technique

In this section we shall discuss yet another approach to the solutiun
of the equations of motion of the booster/payload system. The Impedance
Technique as developed by K. Payne is basical’ ' a f 1l-scale method in
the sense that it does not make any assumptions concerning the size of
the payload nor the extent of the changes made in the payload. However,
the method does avoid a full-scal- solution of the coupled
booster/payload equations of motion and is particular.y suited to deal
vith small changes in the paylouc. The Impedance Technigue is
essentially a Base Drive method (see Section 3). It differs from tne
approach in Sect1g§ 3. in the manner in whicb the iuterface
sccelerations l } are computed. Indeed, the interface
accelerations w111 be computed in tne frequency domain instead of the
discrete time domain thereby essentially converting = set of differential
equations into a set of ilgebraic equations.

Let us now derive tte necessary equations., First. recall equation

(3). \
. B
M0 %) [ % t , R
By |).B __B_ I
0 1 x 3
T Ry i (150)

and vrite the top and bottom partitions separately,

Lﬁ1ﬁﬁ *[ﬁ]hﬁ .{%}+{§} (151)

— i
'
x O
k-]
————

:"P] ek + [ %] trel

(152}

o

60



ORLLt L
OF PO & . ey

where we invoke+ Equation (2) and assumed the external payload force«

to be absent ({FP* - {Uf)' Next, we intrn”ice an equation similar to
Equation (87).

it = {XB}F'*”‘B}R (153)

w iere the F-vector represents the booster response due to the externally
applied force vector {Fg{and therefore satisfies,

(o]t +[m]tmt - 15l s

and the R-vector represents the response of the booster due to the
feedback of the payload and satisfies

[Mg]i;B} R+[KB]{xB}R .{-25} (155)

Applying transformation (32) to Equation (154) yields,

., F F T

( 2 | . ‘ } 156
<[5 ]l ] 1n e

We now consider Equation (153) and recall Equation (4),

B B .F B}
- 13
2 | 2 2 (157)
Keening the bottom partition in Equation (157) yields
F R
%x? () = =x§ (t)} + x? (t); (158)

where we nov included the denendence of the vectors on the discrete
time t. Taking the Laplace Transform (with zero initial conditions) of
both sides of Equation (158) introducing the transfurmation Szl (with s =
Laplace variable;f; = the ith input frequency; and j = V:i)we can
write

b 1R F R
O 1% \3‘31)% + §x§ (Jﬂi)t , 1=1,2,..... (159)
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which represents Equation (158) in the frequency domain. Taking the
second time derivative of Equation (159) yields:

B4 aap] - 32 (49, | T e (jgi);k‘ Lt (160)

The basic idea of the Lipedance Technique is to calculate the
interface accelerations{’ﬁ?(jflﬂ}in‘the frequency domain and then
transform them back to the discrete time domain. The two terms on the
righthand side of Equation (160) will be replaced by algebraic matrix
expressions so that the calculation of {)(?(‘_\-C.')} does not invnlve the
solution of a set of differential equations. Let us start with the first
term on the right-hand side of Equation (160). To this end let us

convert Equation (156) to the frequency domain
Ty

F

1

tqn (Jni)f - [mJ [4,8] 5 (jQi)t ,1=1,2,.... (161)
B 4

or, taking the second time derivative,

.. ;F Q2 rq1° \
1~ g

Let us write Equation (32)

B (B
{-f&’- } - _fg- ‘ q ’
B B | "B (163)
X1 *1
with
oy
¢ = - 164
[ B] - (164)
%1

bl - [ﬁ] ! ag] (165)

s~
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B
Premultiply Equation (162) by[fl] and invoking Equation (165) yields

F Q T
B B i ‘ '
xg (jﬂi)% = [fl] _E_:_;f [?B] (jﬂ ‘ = 1,2,.... (166)

or

< (30 )lF - [A (39 )] e (9 |
| 1 N U] B Y 2,2, (167)

‘ 2 1T
[“ (391’] - {¢§] 2 - [‘BJ y 1= 1,2,....

B (108)

Equation (167) then, yields the first term on the rlght-ha“d side of
Equation (160). The matrix A{, L2;) in Equation (168) is the transfer

admittance from the points of appllcat1on of the external forces {FB}
to the interface accelerations.

Similarly, Equation (155) can be transformed into

Gt = s gan] & qap!
1 W o I B SRS o U G U SO (169)
where this time
2
Q T
[B Gia )] . [¢B] F__i___] [¢B] (170)
i I 2 2 1 , 1 =1,2,....
LQi- wB
Croo
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is the matrix of coeffici-nts for the point admittance for the booster at
the interface. Equaction (169) yields the second term on_the right~hand
side of equation (160). However, the reaction vector i (jJZ:) is not
known a priori. To determine this vector let us consider Equation (152)
which represents the payload cquations of motion, and write it as

[ "inj;"SI [.;N + _§§Bj-,fl_ f;- - -2-- (171)
EAENE

o)

H”‘ﬂ

Kguf Kil xi 'R§

where we used Equations (5) and (7). Introducing the modal
transformation (39) and taking into account the properties (40) we obtain
from Equation (171),

I 5T =p wy -
I ! 0
L BE . ”P{ 0 .08 S S (172)
T -
—P P P P
| c -
0 ! M x 0! SO R,

4 - 1] (o] - 4]
(2] - () [s] - [=:]

M , P] .
and [ 2] given by Equation (28). Note that [KZ] is zer hen the
interface is statically determinate.

(173)

(174)

The top and bottom partitions of Equation (172) can be written as,

- s - R

(L76)

L9

PSR

GF POCR QUALI{Y.
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We shall now_asgume that the interface is statically

determinat [!(2 a[_O and calculate an expression for R;} from Equations
(175-176). Pirst, we transform Equation (175) to the frequency domain.

4

‘ 2

] { =T .

| % fjni)§ - | = = [o,,] [u’l’] ;x}’ (Jng:. {=1,2,.... Q)
i

and from Equation (176) we obtain,
T ~p P
- | J=P - - 0
() [RIE ool [2]}7 o] --{s on] am
1-]-.2"«1‘1-
Substituting Equation (177) into Equation (178) y:elds :
2 : .
T 91 —P t ‘"P Q }
K E s | (B [ e
1~ %

- P
R o) -]
I= 1’2‘4- .

{

from which we obtain the following expression for lng (391)4

:Ri (391); - [C (391)] {‘i (3“1)5 o t=1,2,.... (180)
where
o] 4T ][] BTRD-B)

is the impedance matrix of the payload at the payload/booster
interface. Finally, we substitute Equation (180) into Equation (169),

‘.. l R .
UL (Jﬂi)] [c (9, ;x‘; (5“1)=. Le1,2... (182)

Combining Equations (160), (167) and (182) yields

o) o

(183)

- [A (191)] {"}, 4a,)

i=1.2,...
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where we also used Equation (1).

The coefficient matrix of i)tﬁ_}fl;)}in Equation (183) represents the
coupled impedance of the booster/payload system, and the right hand side
represents a pseudo—generalized force. The interface acceleration can
now be computed from Equation (183) with relative easa.

I1f we now consider a new payload on the same booster and with the
same force-{FB}, the right-hand side of Equation (183) does not change

so that,
2\ 4 @ W\
- (2) r (2 LT ) .
{xl; (391)1 - (H— 1® (j.szi)] TC(j @) [1]- [B <mi)] [c(;s‘i)] )
provided the interface does not change. ‘-- } (1)

* 19y ‘ (184)

The interface accelerations ixzft)f in the discrete time domain can now
be derived from equation (183) or Equation (184), using the inverse
Laplace Transform. The payload response then follows from Equation (175).

The approximation involved in the Impedance Technique 1is imbedded in
the transformation to and from the frequency domain. If these
transformations were exact, the method of determining{irﬁj}would be
exact. Therefore, a detailed investigation of these transformations is
required. There are also some problems pertaining to the modal damping
when working in the frequency domain.

Although Equations (183) and (184) were derived for an undamped
statically determinate system, it is clear that damping and statically
indeterminate interfaces can be included. For an indeterminate system it
becomes necessary to keep track not only of the interface accelerations
but also of the velocities and displacements at the inte.face. The use
of the Fast Fourier Transform in obtaining the spectral data to be used
in Equations (183-184) presents some problems. In general, however,
enough correlation with the exact time domain solution is apparent to
warrant further investigation into possible improvements.

gzl oo

Or POCR ..
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S. The Generalized Shock Spectrum Technique

The approach presented in this section is a generalized version of
the shock spectrum technique as developed by Bamford.

In order to explain the basic ideas underlying this technique let us
recall Equation (43)

B

T,T % X S ) W ' F
THe ToMLT 0, | T M T ¢ q ’ 2 T.T ! r N

B'P B
_-T-.._-.E : R g 1 A B | [ |t TTpey! O g { | % (o]
T t &p 2
¢y Ip¥pTpoy ! I N s 0 l[;p] J 3: 0

]

(185)

and let us assume we retained M modes for the booster (i.e.[Pa] is an MxM
matrix) and N modes for the payload (- 55 ] is an NxN matrix)

The basic idga of the shock spectrum technique is to determine load
maxima without having to solve Equation (185). To reach this goal, a new

model both for the coupled system and the forcing function {FB} is
introduced.

First, the (N + M) modally coupled Equations (185) are ceplaced by
(N x M) gets of two simultaneous equations each of which represents the
coupling of one payload mode with one booster mode, as follows:

1+ §°B}T T:Hpr =¢B} . §¢B= : T§HPIP ;5:‘ 3 ;Bi

|
]
|
)
—p) T i =g
|
; P"PTP 1*3% ! 1 Ay
[ FB
w2 sO , ! g
T 91 () sl 1O ge1,2,....m
= 5 (186)
| °P3 Ny 0 3=1,2,....xn
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vhere we assumed thag the interface is statically
determinate ( 1-e. [TPKF’TP-] = [O])

Secondly, a bound qgp on each of the (N x M) modal responses of the
payload is established. This is done by introducing a new model for the
forcing function in Equ.tion (186). The rather complicated forcing
function is replaced by a much simpler function (e.g., an impulsive
force) which produces the same maximum response peak as the original
force. Therefore an analytical solution for both the response and
maximum response of Equation (186) .s possible (after some additional
simplifications). Finally, a bound qp on the total payload response is
constructed by summing over all the individual modal bounds qgp (over
absolute values or in a root—-sum-square sense that allows for phase
weighting). Payload member loads are obtained by adding the
contributions of all payload modal loads.

As stated above, the forcing function in Equation (186) is replaced
by a modal delta function of a certain magnitude Fg. This magnitude
Fg is evaluated from an already existing transient analysis of the
booster with or without a dummy payload.

The main objectio~s that can be raised against the Shock Spectrum
Approach are:

1) No critical evaluation is available on the validity of replacing
model (185) by model (186). What effect does this replacement
have on the load bounds? This change of model could not only
result in a toc conservative design but also in an
unconservative one. Model (186) not only ignores the coupling
between the B-modes due to rigid body feedback of P , but more
importantly it ignores the effects that the coupling of one
B-mode with one P-mode has on all the other P-modes.

2) The manner in which Fg is calculated again leaves the question
of whether or not the envelope values are cunservative or not
and by how much.

3) The method appears rather complicated and is not simple to use.
This can lead to misinterpre-ation and confusion when the method
is applied. More rigor in the mathematical formulation is
desirable.

The method can be of definite use in the first stages of a design
effort. It leaves the payload designer the freedom of operating
independently from the booster organization. This results in a quick
turn around time. The method could then in the final stages be
complimented by a more rigorous approach.
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CHAPTER II. A PAYLOAD INTEGRATION TECHNIQUE -~
FULL-SCALE VERSIOMN

1. Introduction

Present analytical techniques by which design loads are predicted are
very costly and time consuming. The calendar turnaround time of a given
cycle usually is lengthened when the payload design organization, the
booster organization and the payload integration organization are
different companies. Indeed, a fair amount of coordination is necessacy
to make the transfer of information between those three organizations
optimal. Unfortunately, this coordination is very difficult to
establish, resulting in considerable time delays. Moreover, these costs
and delays repeat themselves for every load cycle (i.e., every time a
change is made in the booster or payload). A typical example is the
development of the Viking Orbiter System as mentioned in Chapter I.

The ever increasing number of modal coordinates necessary to model
today's aerospace structures not only increases the cost of a load cycle,

but also imposes greater demands on the analyst to keep the models within
range of current computer capabilities.

The objective of the prusent chapter is to develop a "full-scale"”
payload integration method which reduces the cost of a load cycle and
will be ca,able of handling very large systems. This new approach is a
"full-scale'” method in the sense that it actuzlly solves the coupled
booster/payload system equations and does not involve any additional
approxiwations or assumptions as compared to the standard transient
analysis.

The configuration of multiple payloads connected to the booster
through separate interfaces is typical for most Shuttle missions. The
fact that many of these payloads are not directly coupled allows for a
significant simplification of the booster/payloads system equations.
Superfluous interface degrees of freedom on the booster side can be
accommodated within the formulation. Superfluous interface degrees of
freedom are those interface degrees of freedom which are included in the
launch vehicle model but are not connected to any payload. The
superfluous interface degrees of freedom arise because the booster
organization cannot afford to reconstruct a booster model every time the
interface with payload(s) changes.

A numerical integration scheme used to obtain the booster/payload(s)
system response is defined. The standard approach is to obtain the
so-called "modal modes" i.e. the coupled system modes in order to
decouple the system equations. The present approach avoids the solution
of such a system eigenvalue problem. A Newmark-Chan-Beta numerical
integration scheme is used to directly determine the system response.
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This technique takes advantage of the peculiar structure of the equations
of motion for the system. All zero entries of the system mass and
stiffness matrices can be eliminated. In fact, a comparison feature can
be implemented so that elements close to zero can be omitted, reducing
the cost of the integration routi . even more. The comparison feature
makes the full-scale method a so-called short-cut method. A full-gcale
method can be defined as a method which yields "exact" results compared
to the standard transient analysis technique, whereas a short-cut method

introduces an approximation or assumption which leads to a more cost-
effective but less accurate solution.

A Fortran computer program has been written and implemented on the
CDC Cyber 172. The final remarks section discusses advantages and
disadvantages of the proposed approach.

2. Derivation of the Basic Equations

The objective of this section is the derivation of the equations of
motion of the launch vehicle/payload(s) system. Figure 3 shows the free
body diagrams of the booster B and the payload Pl and P2. The booster
and the payloads are connected to each other through the interface. We
also consider superfluous interface coordinates. Indeed, often the
booster interface contains more degrees of freedom than is necessary to
attach the payloads. The reason for this is that the booster
organization provides a set of interface restrained booster modes which
can be used to accommodate many different payload configurations. It
would be prohibitiv: to recalculate a set of cantilevered launch vehicle
modes every time the interface with the payloads changes.

From the free body diagrams in Figure 3 we can easily write the
uncoupled equations of motion for the booster B and the payloads Pl and
P2 (This is similar to equation (3)):

- ¢ _ .
\ \ . |
. L W XC'BW B0 ||
...... . - -._.—L---_,——- -
[} } i
. |
1 JXPI * Kpry | %1
[ R NN I P B R T B
‘ ne ' I
L ! ' Mpa :ZPZJ | | Kp2] \"Pz

(187)
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P1 P2

Figure 3 Free-Body Diagrams of Booster B
and Payloads Pl and P2
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Several well known procedures to couple the above three equaticus

were discussed in part A of Chapter I.

Again, the objective is to

eliminate the redundant interface displacements and, in the process also,

the unknown reaction vectore.

One such technique uses so-called

“cantilevered" booster and payload displacements. This technique was
discussed in section A~3f of Chapter I. To set the stage, let us note
that ve can partition the vectors § xg} , §xp1t éx?Z} » { Fg¥ »

etc. as follows,

!xBW
N

xB

g} = _I_l_j
B

*12

B
(18

[ p2)
N

bpp Ko

P2
X

12
y

]
i
1

®y )

Rpp b=~

_R2

-

{Fp}= ﬂ—o——k(

0 (18.)

13

ORIGINAL £ :ﬂ.‘”;
OF POOR C.#LITY

Similar partitious can be written for the velocities and the
accelerations. In the above equations we assumed that the external
forces only act at the non-interface booster degrees of freedom. This
assumption is only made for convenience. Also it should be noted that
this development is not limited to two payloads.
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o s B Pl . P2
Next, 1t is easy to show that {xﬂ}‘ » {xN} s andsz § can be

written as tollows:

B B ,-1__B B
{xN}= - (K] [KNI]{XI} + {

Pi Pl.-1._P1., Pl
By = IRyl IRyl Uy 3o+

P1 _

N}
These equations .re similar to Equation (81).

Using Equstion (189) ana the fact that
B 13} By _ P2}
{ xIl }= {xIl } . {XIZ } {XIZ

we can form the following transformation,

Vx ) I ! T 10 ¢ ]
B B B ] 1 | 2
- —-——p—_—_———— = b o — o — -~
| c, o, | |
i !
*p1 =|%5 : Tp1 e, %
\ | |__.07 ._08__:____'_~_
R B 0 I
| 79 10
%pa| 011 Tpo . %12 : 12
\ / .0 | |
o9 014 i
vhere,
..1 =
r'BKSI B
______ 1
1 0 O ---
T, = (BxIF) , x? = x?z&
B 01 O _ 2o
B
1S
I_0 0 1_‘ )
_p17l P
Kev Kt 1
Tpy = P1 |

--= - 7| (PIxIF1), 1
I

73

,ZNB}

P2.-1__P2. P2 —P2
Kl [Kgpi{ %) + (%

=71
{xN }

}

(1xIF1)

(1xIF2)

(1¥TFS)

(P1xNP1)

(189)

(190)
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P2

-1
P2 P2 - 1
Ko S ! 0
0

- N = NB\
- - — ===l (P2xIF2), I,, =|--| (P2xNPZ) , I (BxNB
1 J o]
NOTF;
IF = IFl + IF2 + IFS GRIGIIAL FARE 42
B =NB + IF OF POOR QUi !
Pl = NP1 + IFl
P2 = NP2 + IF2
also, 09, the zero matrices 01, 02, 03, 04, 05, 06' 07,
08’ 09, 010, 011,012, 013, and 014 have dimensions BxNPl,

BxNP2, NPLxIF2, NPlxiFS, P1xNB, P1xNP2, IF1xIF2, IFlxIrS, NP2xJfl,

NP2xIFS, P2xNB, P2xNP1, IF2xIFl and IF2xIF2 respectively.

Taking into account that the reactions between interfaces are equal
but opposite we can substi :e transformation (191) into Equation (187)
and then premultiply by the transpose of the transformation matrix. This
will eliminate the redundant interface displacement vectors as well as
the reaction vectors. The resulting equations are the couple discrete
equations of motion and can be written as:

F_T N T. { ¥ o (OB]
IpMIp | IMT, |0 o Ty
— e — —_— ——-—-——--———T—- T-————- - 1—-—-—~ - —
l I TPlMP.IPII 0 B
T, . | | ST %
TgMp g Mro 1 O TegMpalpl )t
: L ' o ?
—_——d e 2 — =
-—~-—-T————————— _—— - -
T | T t 1
|
O TpMpiTer O O TpiMeyTprr O i
T e bt Rttt B OO
! Ty - i 1T P2
N ) 0 IpoMpotp 00 0 Te2r 22| [N
= . ' . — Y or \
Te 1.1 | i B T
R I (193)
BB . N B
| l B
o |« o ; n 1 TTF
+ TR | S -ﬂ BE
ST | el |
0 0 LIPIKPIIPM 0 < 0
ST T T T T T T T T ey |
' -
o o+ 0 0 1 Ip2%p2tp2| (*x 0 J
|_ ) | ) ) \
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where, orranr mo
OF POG. (L. 0Y

[t - } B
. | "p1%p1 ey . 0 0
M__ = TMT +| |
- | 0 TeotpyTpy O
f 0 0
T . (194)
T [.TlepiTm : 0 0
K =T T+
i TEE Y 0 Te%epTpy O
N 0 G Od
in, it can b hat [T.K.T.1, [T- K. T d
and again, it zan be shown that a3¥pTR-* p1Kp1 Tyt &0
T . i T
[IPZKPZTPZI always vanish and [TBKBTB], [TPIKPITPll and
[f;;KPszzl vanrish when the corresponding interface is determinate.
Next, we ¢ -roduce the interface restrained modes, i.e.
8., By, _. B
T =1
‘¢N]{QN}”XN} ,
(195)

P2, P2y (P2,

oy 11 ay /= 2y

Thes2 me” s :an be truncated -ccording to a predetermined cut—off
frequency, charedby reducing the size cf hquation (193). Substituting
Equations © 5, into Equations (193) we obtain:
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(196)

with

T B
B o= TgMaTpdy

(197)

[

e .
Tp1Mp1 )
P = 0

D

0
= Discrete Damping

I

i
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N

Note that we introduced damping and that we kept the interface
degrees of freedom in discrete form. This is recommended when DENSE

Logic is used in programming the procedure. If PARTITION Logic is used,
we actuall, introduce the interface modes [P ],

M ] =PI o)
T 2
IR ] = twl

Although the booster and payioad modes can be truncated, it is imperative
not to truncate any interface definition. This is of special
significance if one introduces the interface modes. The motivation for
this will be explained in the load sectionm.

Before proceeding with the next section, we wish to introduce the
following notations:

i ! ~2 | |
f_l-.‘i_.n_"_-l “ L0 %
{ \ }
{M] = |B | MII' T , [K] = 0 \ KII {1 O
S —— 1L
L0 Il P 11 0 1+ 6 “‘"’P (199)
- |
2 B Bl 0 | 0
et b el
=1 % 3Pt
| [
| 0 0 gy
( —B ) '$BT,TF A
N N ‘BB
B } )
{q}- ¥, xI 3y R {F - TBFB ’
— e (200)
_P
v Ay L 0 )
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So that Equation (196) can be written as: g?“:‘gg‘: g{Ji\UTY

M) {q} + [c] {4} + [kl {q} =1F} (201)

3. The Numerical Integration Scheme

The objective of this section is to choose a suitable integration
scheme to directly integrate Equation (201). This is in contrast with
the usual approach, where a new eigenvalue problem with [M] and [K] as
wass and stiffness matrix is solved.

It is important to recognize that system (201) can have a frequency
content much higher than the cut-off frequency of the forcing term.
Usually, those higher frequencies will not produce significant
responses. Therefore, a suitable numerical technique should be capable
of using a stepsize h, which reflects only the highest frequency of
interest but at the same time remains numerically stable. For example, a
Runge-Kutta routine would not be suitable because it requires a time-step
consistent with the highest frequency in the system, even though these
high frequencies riay not be of interest to the analyst. Although there
are techniques to obtain a good estimate of the Lighest system frequency,

using such a frequency to determine the stepsize would unnccessarily
increased the cost of the response routine,

A method that satisfies above constraints is given by the
Newmark—-Chan-Beta integration method:

G, = @} + a-nnlad, + vnlgh (202)
= : 2 b 2 .o

@liey = (93 + 0@y + (0.5-g)0" () 4pn fakj (203)

M gaky,, +orefaky, + W{aly, = {Fhy, (204)

where the method is unconditionally stable if B> (2% +1)2/16.
Artificial positive damping is introduced when ¥ > 0.5, and artificial
neg.tive damping if ¥ < 0.5. Good values for our purposes are ¥ = 0.5
and ﬂ! 0.25. Theoretically, the time step h can thnen be given any value
while the scheme remains stable. In fact, for very large velues of h,
the scheme generates the static solution of Equation (201). Alsc, the
scheme will damp out the highest (and least important) mc~=s while
preserving the lower ones. In addition, as we shall sre shortly, the
Newmark-Chan-Beta scheme is capable of taking advantage of the peculiar
structure of the present equations of motion. Indezd, let us sub..1itute
Equations (202) and (203) into (205) and obtain
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- [ Q-Dhe + G -pOIWKIfq}, - [K]fa} (205)

or, using Equation (199), we can write:

— I \
Dy B O %Nis _BL
TTrTTO T ~ (206)
B i
B E Dy | P Xy = § {_1;
L oo -
. I “p
o + P ! pilgq £ J}
] H + P..
] 3 N+ B
with
T . . 2B
8 T o B @ - =3
fay = Oy IpFpyer ~ Dani ~ V79N1 T “B M (207)
T .B .B B
Fri = TeFaie1 ~ Ds*n1 ~ Pe*ns ~ Xir*n (208)
_ .p =P 2 _P
Epy = Dgdni ~ Polyi P INi (299)
and
D. =14 2Yhl o, + BhZ &2 D =M.+ YhD + B’k
1 B B B 2 T 11 1I
— - —2
2 =2
- = - D =2Lw. + hw
D, = T+ 2Y h3 @5+ Bn @y 4 B B B
- = —9
D =D.. + hK D, =28, b, + hup
» = (210)

=
L]

—_— — 2_2 - 2
2 - - = -\ -
7 (1 y)hCBwB + (0.5~B)h wy 38 Q1 .)hDII + (0.5-B)h KII

- — , o~y 272
D9 = Z(I—Y)thwP + (0.5~-8)h wp
are diagonal matrices, except Dy, D5 and Dg which are IFxIF
matrices. Consequently, the evaluation of fg;, fyj, and fp;, are

very cost-effective. Alsc, note that D (i=l,...,9) are one-time
calculations.
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Norwally, the solutiou for {q} j,1 in Equation (206) requires a
triangular deconposxtxon and must be repeated for every h. However, in
this case the unique form of the coefficient matrix of {q} ;.1 makes it
possible to avoid such decompositions. Moreover, it is possible to
completely take advantage of the diagonal and zero partitions appearing
in that coefficient matrix.

First, let us premultiply Bqultxon (206) by [-BD‘1| 1 | -PD;I ]
which yields the following expression:

008
Exriad = A {agfy + £ ¢ A3fpi} (211)
with
- T T -1
AL = [ D, + A8 + Ak | (212)
= - -1 = - P -1
A2 DI® , A3 D3 (213)
Furthermore, from Equation (206), we easily obtain,
Wil = D'llfni + Agi?in (214)
TRier = 03 Mepi ¢+ ATRHia) (215)

Equations (211), (214) and (2)Z) represent the final set of
recurrence relations replacing Equation (206). Note that Equation (212)
represents the inversion of an IFxIF matrix where IF is relatively small
in many applications. This effectively removes the problem of triangular
decompositinn of a large matrix. Also, note that the cost of the
algorithu primarily comes from multiplications involving matrices Aj,

and Aj. Note however, that their dimensions are IFxIF, IFxNB and
I%xNP respectxvely. In additioy, rthe routine requires much less core
memory which allows for the so. .tion of much larger problems.

2

4. The Load Transformation

The purpose of this section is to bri.fly review the "acceleration"
approach to calcularing loads and at the same time point out some
possible savings. An elementary member lcad transformation can be
written as:

{15} = W15 {xpsl (216)

Note that such a member could be part of any payload. For example, if
the member belongs to payload Pl, then {xpj} -{xn} .

ORIG e L -
OF POOR QUL Y
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Therefore, once the system response is known, one can substitute the
displacement vector {xP} into Equation (216) and obtain the member

loads. This direct approach is called the "displacement" method. In
many ca.es, this is a perfectly valid approach especially if all the
modes in Equations (32) and (39) are kept. However, if modes are
truncated according to a cut-off frequency, this procedure often leads to
inaccurate results. This can be corrected by using the so-called
"acceleration" method whereby § xp} is replaced in terms of applied

forces and accelerations using the system equations of motion without
damping.

Hruda and Jones introduced a load transformation consistent with
modal synthesis techniques. In terms of the present notationm,
Equation (216) can be replaced by:

“Pj
N .

{L,} = [LT1] - + [LT2]. {x.,}

j i | .5 3 13 (217)
X;.
R
with
- T ZPi i
(LT1], = (R4 UL Ep T 1 I-Mp 1T, B 1 Ty (218)
[LTZ]j = [k‘l’lj[TPj] (219)

Note that [LT2] = O when the interface is determinate.

Normally, the displacement vector {z&J: in Equation (217) must be
written in terms of forces and accelerations using the second partition
in Equation (193). This not only increase~ the cost of the procedure,

. - =8
but also introduces the booster acceleraticns {qy| and forces {Fg}
into the ~roblem. We shall now show that this is not necessary under
certain conditions.

First, let us obtain the erp.ession for {x?-} which ordinarily
should be used in Equation (217). From the second partition in the
discrete Equation (193) we obtain for {#?} :

£:51= w7 an) i g - Bi{ g} - (220)

B PPHT{-} - [MIIH".‘IIS} - )

ORiemAr ~.
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where ORIGINAL PAG:

POOR QuALT
(B] = [TjMplp] OF (221)
™M .1 o |
[ r1'p1 Pl
%] = | T (222)
: 0 TpMpate
o ! o |

Ti:is is the exact expression f;é rhe discrete interface displacement
vector. The damping force [Dyjl] { I} possibly can be neglected, but
we may also keep it. Next, the acceleration approach requires the

introduction of the modal accelerations which then subsequently are
truncated:

{2} - Do irg - {0}

(223)

- [P]{%‘;}' [MH]{;‘I}" [DII] {_x];})

This is the expresslon which ordinarily must be used in Equation (217),
i.e., the { If as given by Equation (223) must be used to select out
the appropriate x% ¢ partition.

On the other hand, the expression for {x?} as calculated by the
response routine can be obtained from the second partitiom of
Equation (196):

BBy e ot TRy - BI{og) -

- (P]{.E.;}‘ CERFR R LR {;‘2})

which turns out to pbe identical to Equation (223). Therefore, we can
use ixlj} in Equation (217) as given by the response routine. No
conversion is necessary.

(224)

In case interface modes are used in the response routine, i.e. if

§0h= 1@l {ai¢ (225)
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then the calculated fq?} vector is given by: OR,G'N"‘L Foorsoag,
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fao} = Wit c@htinlt {rd

T e
BT B, =B .B
- [ TBMBIB$NH. qu -ty “1} (226)
BT T _ . U B
- Ly TPMPIP‘#N]“N} - g} )
The corresponding .{x?fis given by:
§aoh = W01 roZ 37 @ TIn,)t R
-6 B} - t23 {8 (227)

-whT g} - {5})

where we used Equation (225).

Expression (227) will be identical to expression (223) if and only if
all interface modes are kept. Indeed , considering the properties

B.T B B.T B, _ 2
B Tl = MI, RUIKR IR = twld (228)

we can write

-1 B 2 -1 4B.T
(Kpp) = [‘PI] Loy #1] (229)

only if we keep all intertace modes. Conversely, if we do not keep all
interface modes, then Equation (229) is not valid and the right-hand side
of Equation (22 ) is different from the right-hand side of

Equation (226). Substituting Equations (225), (228) and (229) into
Equation (227) yields:

{21 Pl 7T CiEg - B o}
et (5

Sy - o
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.—.-B
{x}= ot rd - {0}
=p “ «B
S K REL SR e o [DII]{XI})
(231)
which is identical to Equation (223)
Next, let us write Equation (218) as follows:
- _ h]
(LT1], = [k [L] (- By TiTp i 1 B
T (232)
- ey gy Ty )
: . <Pj, _
It is now relatively easy to show that [E ][IP]MPJIPJ]th ] =
[}i?]ﬂﬂgsl-l even when not all the payload modes are retained in
[}ﬁ]. Therefore, Equation (234) can be written as:
(LT1), = [k iT,0 (- By) (g1
_ T (233)
[EPj][IPjMvaPj] )

Using Equations (217", (219) and (233) has several advantages over
the approach outlined in Refetencef_53] First, in case the interface is
mdetermnate (i.e. if LT2 = 0) it is not necessary to use Equation (223)
for {"If , 1f and only if we keep all the interface modes [¢?]

This not only makes the evaluation of | Equation (217) much simpler, but
also reduces the amount of mformatmn to be stored in the course of the
respense calculations (i.e. only{qn} {xlf and {_xlf must b2

stored). Secondly, the rathe§ expensxve evalustion of [oX =

-[W].[I .][E [I""]MP IPJ]@M as proposed in Reference ES'3_]

is now replaced by the more 2fficient computation of 1,9 ).
PJ][(l)z ] . Indeed, applying unit loads success veiy to each of

the non-1nterface dofs., often becomes a rather expensive item,

considering the potentially very large payload mcdels. The other term in
Equatlon (232), [T] = -, “PJ“EPJ] x
b3 [IPJHP TPJ] can be easxly evaluated by first forming the product
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[IPJ Pj P .], the columns of which can be looked upon as inertial
loads applied at the interface of the payload. The corresponding
deflecitions are equal to [E-]j = [E ][IPJMPJTPJ]. Finally, one
must evaluate [E ]j = [TPj] in Equatlon (219) so that we obtain:

(LTil5 = () 5(0 815, (1) (234)
(LT2] = [K¥);[E]; (235)

Observe that the payload organlzat1on can easily save [ﬁ?]
(81, j» and [E]); so trat any member in -he payload can now be
1nvest1gated wlghout recalculating these w. ‘ces., Observe that
Reference[53Jrequires the payload analyst to make the choice of members
before the evaluation of Equations (234) and (235). If for some reason
an additional member has to be investigated, a reevaluation of [LTI]J
and [LT2]; is necessary.

Finally, it should alsc be noted that the loads calculation does not
involve the '"modal modes'" which reduces the computational cost even more.

5. Conclusions and Summary

A nuuwerical integration scheme has been presented. It is a
"full-scale'" approach in the sense that it does not introduce new
assumptions or approximations compared to the conventional "exact" solution
techniques. Improvemerts over the conventional techniques are introduced

in both the response and loads calculations.
The response analysis uses an adaptation of the Newmark-Chan-Beta

numerical integration techrnique. This integration scheme is directly
applied to the coupled system equations (i.e. booster/payload system)
“hereby avoiding the expensive solution of a system eigenvalue problem,
The Newmark--Chan-Beta technique has the convenient feature that the step
size can b+ based on the “cut-off frequency"” associated with the forcing
function regardless of the highest system frequency. This particular
feature is necrssary in the present method because the highest system
frequency is not known 1 priori. Although there are techniques to
determine the highest frequency, it is very likely that this highest
frequency will be much larger than the cut-off frequency which would lead
to a much smaller time ster. It should also be noted that the present
approach allows for the solution of much larger systems.

Next , we derived a load transformation consistent with the above
modal synthesis method. Several cost saving features were introduced.
First, we showed that in the case of an indeteiminate interface it is not
necessary to write the interface displacements in terms of accelerations
and forces, provided one keeps all the interface modes. As indicated,
one could actually keep the discrete interface diisplacemenis instead of
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introducing the interface modes. Secondly, it was shown that several
simplifications can be affected in the calculation of [LTl] and [LT2]
leading to a more efficient and convenient loads calculation. Finally,
it should also be pointed out that we do not involve system modes which
reduces the cost and simplifies the analysis.

It is estimated that the present approach will reduce the computer
cost of a payload integration effort by a considerable amount.
Considering the numerous load cases that must be considered in the course
of a design effort. the present approach may prove to be of ;rz2at value.
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CHAPTER III. A PAYLOALC INTEGRATION TECHNIQUE ~
SHORT-CUL VERSION

l. Introduction

In Chapter II, we developed a numerical integration scheme which is
capable of .olving the set of coupled system equations as given by
Equations (196). The method is a full-scale technique because no special
assumptions or approximations are used. This means that the results are
as accurate ag those obtained from a standard full-scale approach.
However, under the right circumstances, tre cost of this approach is
significantly lower.

In this chapter, we wish to adapt this full-scale direct integrstion
technique to a short-cut version. The approach is based on estimating
the size of the feedback from the payload response into the booster.
First, we shall derive the so-callad coupled base motion equations for
the system. These equations still represent a set of accurate full-scale
equations of motion. One possible approach is ro completely neglect the
feedback of the payload into the booster. This leads to a technique
known as the direct base drive technique as discussed in Chapter I,
section A3f and B3. In many cases this technique leaas to acceptable
results. Instead of completely neglecting the feedback, we t*all subject
the magnitude of this feedback to a criterion. The result wiil be a
method which, depending on the nature of the structure at hani, will
vasilate between a full-up coupled base motion technique and a direct
base drive method.

In section 2, we shall derive rhe pertinent equations of motiocn.

2. The Equations of Motion

First, note that the equations of motion for the coupled base mot:?
technique are derived in Chapter A3.f. Following that derivaticn, .et us
write down the coupled get of equarions of mction as given by
Equations (196):

- R
! °N

+B

+

: 1

~p
0 N

k (236)
-___2 )
L\JB i
‘—r———
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OF POU i f

87



T q-
O Tp1Me1"ps T 0 0
=T
Hv_I 'BMBTB + 0 TPZ"’Pszz 0 ’
0 0 o
r -
- T -
e Tp1¥p1Tp1 T 0 0
Kip = Tefplp *+ 0 TpoKpoTpy O ,
0 0 0 j
-1' -1 -
TMpilpr O
I T —p3 _
]
0] | 0
a .
-2 -
T B - |
Pt 's# -2 1! !
B’ BN 2t
N ! u)-?
L i P2

QRIGINAL PO ?‘f'i

OF POOR QUALYYY

(237)

Following the philosophv of a base motion technique we first sclve
the following set of equations,
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This set of equations represent the equations of motion for the
booster without payicad(s). Note that one could also load the booster
with a standar? payload which would represent a kind of average payload.

The solution of Equation (238) is the same for all payload
configurations an  does not change as long as the forcing function and
tie bcoster model do not change. A modified Newmark-Chan~Beta numerical
integration scheme can be used to obtain the solution of (238):

{ g1 = {8y + -O0{dhgy +¥n{dlgyy,

(239)
- ¢ 2 *» 2 o
. = {q}m + “’{q}m + (0.5-8)h {q}Oi * hpiq}OiH
T1¢=B
Dy : B INei+1 fpi
i (240)
s h Catatt Y A
‘ "B
B L X f
v T2 I0i+1 Ii ORIGI:=- - B
OF PCOR Quri, 5
where
_ —BTITF p B _ pEB 223
fp:1 = Py IFmir1 ~ D3dynoi 59501 ~ UWs o1
(241)
T .B «B T B
= - - - T T
f14 TeFpi+1 ~ Ps¥101 ~ Pe*nod 3¥aTB*NO1
Also,
D, = 1+zmngB + Briw
D = TIM.T. + TIKR.T.h>
1 B B B"B B B
" (242)
— —< 2
D, = 2w, + Wgh
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Dy = 23wy (1-Mh + (0.5-8)n” wy (242)

T 2
D6 = TBKBTB(0'57B)h

1

-1t

Premultiplying (240) by ! -BD1 : I] vyields

%2 A, [ £, + AE . ] (243)

ICi+1 1 Ii 2 Bi
with

-1
A2 = =B D1
T =1

Ay = [ D +4A,B |
also,

‘LB - D_l f N T "B

INO1+1 1 'Bi 2 *NOi+! (244)

The equarions to use then a: Equations (239, 241, 243, 244). The
quantities to save are {xjo} , fx;0$ and fxr0} -
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Returning to Equation (236) we can write:

—B
{qnf qno} * {qNR}
ORIGINAL P& :" IS5
OF POOR QUALITY (245)

{X§} = {xgo} + {ng

The residual quantities gqNR} and
presence of the payload(
back into the booster.

X?R} are clearly due to the
s l.e, t:hey are the feedback of the payload(s)
Let us write the following vector equation,

r —B ~—B —~B 7
R f 50 ( INR
B _ B B ‘ (246)
4 x; b= { *o * { *mx}
—~P —~P
0 q
\ N J \ N

Substituting Equation (246) into Equation (236) and taking into
account Equations (237-238) leads to the coupled base mction equations,

p—

T 1 A - ™ -

' i —_ - _LB
'
I B0 Ol ang ¥y , 0, O INR
i = —_— —..____.'_.._.‘-_._--.4 —— ]
]
g tu._ 4o || %8 + o 1. ' o %3
i & I IR 1Dy IR }
e B B e | e
T =p ! o3 ~p
|
! 0 ' Poo 1_ 1y L 0 : O 2 pWp | | 9y ;
= N F g \ ]
R L 0 L
] 1 _ L) .
190, Kip : 0 4XIR$ P1r*10 T Prr*ro T ¥Pr1*1o >
.—_;.—--—-r—- e e ] e e e e e e e
"_2 —P T ..B
I —
[0, 0 1 U \qu Po x50

(247)
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To1%e1Te1 0 0
[KP_._] = 0 TT K_,T 0
11 P2 P2 P2
0 0 0
L e—

This set of Equations (247) could be solved resulting in a full-scale
accurate solution. However, physically it is possible that the feedback
- ) + 8
vector ian is small (note that we need not have thR} and
B . 8 1. . .
{xIRg small), i.e. {xm x> 0 for all times t. Then from the third

partition of Equation (247) we obtain a decoupled equation for {E{;f s

I S Er 2R F e I i L S (L

(249)
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which can be easily solved, because {;1803- is known. This approach is
called the direct base drive technique and has been used successfully.

The problem however is that the magnitude of {Jig;} is not known

in advance and may not always be small. In that case, Equation (247)

rshould be solved retuining the cuuapling terms. Again, a Newmark-Chen-
Beta technique can be used as follows,

faljy = 3k + -On {a}; +¥niahyy, (250)
fabgoq = Aad, +nfad ¢ 0B {5} ¢ WBLEL,

and

~B B -2 —B

fae = "Dy 9xry ~ D7 Ry T Wp 9yry

..B B - B
£r1° "MP11 X10341 ~ P11 *roi+l T FFrr Xpoi+l
B “B B (251)
= Bg Xxrpy ~ Pg *1ri T ®y1 *rri
T -_uB "‘P "'._P - —2 _P
fp1 =~ P Xyg341 ~ D In1 T Dy Ing T Wp 9yy
Also,
%2 A (Af. .+ f.. + A_f_.)
IR1i+1 1 %2 81 i 3tpi (252)
—B -1 T ++B
ayri+1 - D1 fpi t A2 *ririsl
(253)
op 1 T ..B
INi+1 Dy fpy * Ay Xipin
where
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I+ th}BtT)B + ,th d)'g

2
MII + xhou + ph KII

1+ 2Xh}PBP + ,ehth)Iz,
—_—— —.-2 =
23pW,  + he , D D.. + hK
T W+ h@l
3pWp P
9o (255)

2(1-)h3 W, + (0.5-8)h wy

2
(1-)’)m)II + (o.s-p)h Koy

2(1-7)}:?1,&}1, + (o.s-p)hza_)ﬁ

At this point, it is possible to introduce & criterion which checks

the magnitude of say {;51} » If this magnitude is smaller than a

. .. T8 T
certain preset € then the quantities Azi"miu} and A3 {x

ne
IRi+1

in Equations ( 253 ) are not calculated. A possible criterion could be

of the following form

";ElRin <& " .}211301“ (236)

where € 1is a preset percentage (e.g. 0.01).
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This criterion could partially avoid the premultiplications by A;.
and A, in Equation (253). There are two more cost generating
ptemu%ciplications by Ay and A3 in Equation (252). Thess could
possibly also be avoided when the feedback acceleration is small. This
would mean a direct base drive at that particular time step. Both these
approaches were implemented and will be discussed in the next chapter.

The main problem with this kind of approaches is to find an answer to
the question: What constitutes a small feedback? This question is still
not answered even with an equation like Equation (256). Even though
encouraging results were obtained, it is recognized that additional
res2arch and development is necessary.
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CHAPTER IV. THE SOFTWARE PACKAGE - IMPLEMENTATION

1. Introduction

This chapter discusses in general terms the software package
associated with a complete booster/payload response and loads analysis.
An attempt will be made to clearly link the theory of Chapter I with the
specific program and subroutine descriptions. This will give us the
opportunity to touch upon some of the constraints and difficulties
invariably associated with the development of a practical payload
integration software package. Some factors to consider are: computer
core usage; convergence; available data; the separation of booster,
payload and integration organizations; work schedules; engineering time;
ease of program usage; computer cost and related efficiency of

algorithms; reuse of existing information; required accuracy versus cost;
handling of potentially large models; etc.

Section 2 of this chapter presents a general description of the
organization and components of the software package. In particular, we

explain the purpose and contents of the components and how they relate to
each other,

Section 3 presents a simple sample problem and shows how it is
analyzed and evaluated. Also, the case of the STS-ST-OMS Kit is
discussed in addition to some other sample problems. Finally, we shall
also discuss some of the results related to the short-cut version
developed in Chapter III.

2, Organization - General Description

This section outlines the organization of the software package.
Figure 4 represents a flow diagram of a complete booster/payload
integration problem. Each of the flow diagram blocks has a program
associated with it. Therefore, there are six programs: PROGRAM BOOSTER,
PROGRAM PAYLOAD, PROGRAM INTFACE, PROGRAM FORCE, PROGRAM RESPONS AND
PROGRAM LOADS. Each of these programs draws on a pool of subroutines
called FORMA (Fortran Matrix Analysis). FORMA is a iibrary of
subroutines coded in FORTRAN IV for the efficient solution of structural
dynamics problems. These subroutines are in the form of buiiding blocks
that can be put together to solve a large variety of structural dynamics
problems. The FORMA library was developed by the Dynamics and Loads
Section at Martin Marietta Aerospace and is being updated and expanded
whenever the need occurs.

It should be pointed out that other iibraries can be used and that
the proposed integration method does in no way inherently depend on the
FORMA ii{brary. However, in this report, the software is tuilt around the
FORMA subroutine library (in particular, the Partition-Logic version) and
therefore, the + r is assumed to have a working knowledge of that
library.
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There are several reasouns motivating the PROGRAM approach, Because
all FORMA routines are written in terms of variable dimensions, it is
possible to write each PROGRAM for the specific dimensions of thz problem
at hand, thereby optimizing computer core usage., Also, the user often
has at his/her disposal d-ta already generated by other means. The
PROGRAM approach allows t. > user to omit the recalculation of that
particular data. For example, a set of so-called expanded modes could be
available. The user then can directly read those expanded modes into the
PROGRAM and omit the use of a subroutine which calculates those expanded
modes. Furthemore, the PROGRAM approach allows for the separation of
data generated by the booster, payload and integration organizations,
Indeed, very often these three organizations are physically at different
locations and data peculiar to one organization often is not readily
available to the other organizations. PROGRAM BOOSTER for example, only
deals with data pertaining to the booster and, therefore, works
independent of the payload. Also, sometimes the data generated by
PROGRAM BOOSTER can be used in analyses of different payloads and
therefore has not to be recalculated.

Finally, the PROGRAM approach also allows for better check-out and
control of the data generated at several points in the process of a load
cycle. Indeed, the user can put in his/her own checks if desired.

PROGRAM RESPONS represents the hub around which the other five
programs are centered. The purpose of PROGRaM RESPONS is to generate the
coupled booster/payload system response. The most important subroutine
called by PROGRAM RESPONS is SUBROUTINE ZRESP, which implements the
integration sc' uie as outlined in Chapter II, The INPUT to PROGRAM
RESPONS consists of all the quantities necessary to run SUBROUTINE
ZRESP, The OUTPUT of PROGRAM RESPONS is the system response i.e.
displacerents, velocities and accelerations. These quantities can be
written on paper and tape. In particular, the payload accelerations and
the booster/payload interface displacements at esach time step are written

on tape so that they can be used in PROGRAM LOADS for the calculation of
menber loads.

Much of the INPUT to PROGRAM RESPONS is not directly given and
therefore must be created in advance. PROGRAM BOOSTER, PROGRAM PAYLOAD
and PROGRAM FORCE were composed to serve this purpose, PROGRAM BOOSTER
generates all booster data necessary to run rROGRAM RESPONSE. The
booster organization car use this PROGRAM independently of any other
organization. Enough subroutines were developed so that all booster data
can be generated starting with the free mass and stiffness matrices
[Mg] and (Kg] and the interface restrained modes and frequencies
[fé} and [(’1‘-%]. It is reasonable to expect that these INPUT
quantities are available. 1If not, the user is expected to provide this
information before running PROGRAM BOOSTER. It woulid not be wise to
"can” the construction of (Mgl], [Kpl, [$BN] and [@p] because of
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the multitude of ways these quantities can be generated. Furthermore,
PROGRAM BOOSTER contains a number of “"flags"™ which allow for user
flexibility of INPUT. Indeed, often times certain quantities are already
available and need not to be regenerated. The same is true for PROGRAM
PAYLOAD which is very similar to PROGRAM BOOSTER except that it genzrates
payload quantities necessary to run PROGRAM RESPONS. 1In additisa, it
also generates parts of load transformations 1f desired. Again, much
flexibility is possible depending on the case at hand. FXOGRAM INTFACE
collects some of the data generated by PROGRAM BOOSTLK and PROGRAM
PAYLOAD and produces quantities that involve bot} booster and payload
data. Again, these quantities are needed in IROGRAM RESPONS and PROGrAM
LOADS. PROGRAM INTFACE reflects the courliing between booster and payload
through the interface. For example, it calculates the interface modes
[¢?]. PROGRAM FORCE essentially converts the force data into the

right format to be used in the integration program PROGRAM RESPONS.
PROGRAM FORCE also contains a number of “"flags” which allows for more
flexibility. Finally, as menticned above, PROGRAM LUADS generates member
loads and draws on PROGRAM PAYLOAD for load transformaiion INPUT and on
PROGRAM RESPONS for payload response INPUT.

Each of the six PROGRAMS are independent components of the software
package. PROGRAM BOOSTER can be used by an independent booster
organization. Similarly, PROGRAM PAYLOAD can be used by an independent
payload organization. PROU AM INTFACE, PROGRAM FORCE and PROGRAM RESPONS
can be used by an independent integration organization while PROGRAM
LOADS can be used by any organization that is responsible for loads
calculations., Because each of the PROGRAMS is compatitle with the other

PROGRAMS, it is uiso possible for one organization to use the entire
peckage in sequence.

This section was intended to give the reader a general idea of how
the software package is structured., It is not intended to be a detailed
user guide. The Final Report of this contract will be accompanied by a
detailed user guide as well as the actual listings of all the PROGRAMS
and associated SUBROUTINES.

3. Numerical Examples

In this sectirn we shall discuss several simple sample problems which
were used to check out the internal correctness of the software package.
Furthermore, we shall briefly present the results of two realistic
analyses namely, the analysis of the STS-ST-OMS Kit system and the
analysis of a defense booster/payload system.

The first example is depicted in Figure 5. The booster B consists of
18 pipe segments. The mass of each segment is equally divided between
the end points of the segment. If we only keep translational dofs, then
the free booster has 57 dofs and the "cantilevered” booster has NB = 54
dofs. Similarly, the payload P consists of 7 pipe segments and NP = 21,
Because there are 3 rigid body modes, we have a determinate interface and
IF = 3, The parameters for a booster pipe segment are:

E=6.89x100kN/n2, @ =2.77x. 0%kg /m3, Apoay=1.93x1072m2,

Aytng=4.17x10"302,1=0.762n J,=8.325x10  4n*
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Similarly, for a payload pipe segment:
E=6.89x10bkN/m?, =2.77x10%kg/m3,A= 4.05x10"Ip?,
L=0.762m, J,=1.249x10"6n4

Using the above data, a finite element model was derived for both the
cantilevered booster aud the cantilevered payload. Solving the
eigenvalue problem yields booster frequencies ranging from 1 Hz to 106 Hz
and payload frequencies from 1 Hz to 104 Hz. In this particular example
we used zero initiel conditions and applied loads to stations 16 to 17 in
the x, y and z-direcctions (444822¥cos(i50t)N,1i=1,6).

The accuracy ¢l the adapted Newmark-Chan-Beta routine was checked by
comparing the response results from "~ OGRAM RESPONS with those obtained
from a fourth order Runge~Kutta (Gil. modification) routine using the
same step size. The results compare very well. Table I shows some of
the results for a step size h = 0,001 seconds. It should be pointed out
that a phase shift in the response was observed. 7This is to be expected
and is inherent to the numerical technique used. However, this phase
sh!ft does not affect the value of the maximum or minimum loads in an
element. It may slightly affect the time at which this minimum occurs,
but this 1s of little consequence. Indeed, it is fair to say that in
practice every numerical integration technique produces a phase shift
when a time step 18 used consistent with a cut-off frequency.

Next, we compared computer cost of the present method with that of
the conventional approach. The conventional “"full-~scale” approach first
calculates the so—called "modal modes and frequencies” (i.e. the system
modes from Equation(196)). Then, a numerical scheme (e.g. Runge-Kutta)
is used to determine the response from the uncoupled system equations.
For the present example, the cost of the direct integration routine to

determine the response 1s less by a factor of 5 compared to the
conventional approach.

We also compared the cost of the load calculations. The improved
technique decreases the cost by a facter of 6, It is hard to tell how
this factor will change when the booster/payload system represents a more
re ‘stic configuration. Also, it may be hard to compare cost factors
for large systems from a logistic puint of view. Indeed, payload
orp~nizations currently deliver load transformations which are not
consistent with the present lmproved approach. Therefore, it is often
impossible to generate the approprlate quantities required for usgse in the
present approach, for lack of certain information. It €hould be roted
that this 1s only a iogistics problem and changes could easily be
accommodated.

Table II lists some of the load results obtained for this example.
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The next sample prodblem conasiste of a hooster plate model to be
integrated with two truss-like payloads. The finite element code FINBL
(a finite element program developed by the Martin Marietta Aerospace
Dynamics Sectiou) was used to develcp the thres models for the booster
and the tvo payloads,

The booster as shown in Figure 6 is a hexagonal cvlinder
consisting of 24 quadrilateral plate sections. The material properties
for these plates are:

, &
Q@ = 0,025 1b/in? , E = 10.6 x 10% 1b/in
o = 0.334 , t (thickness) = 0.1 {n

The 24 elements were joined at 30 nodes as described in Table .
Each of these 30 nodes were assigned three translational degrees of
freedon. The geometry and dof. numbering scheme for this booster model
are shown in Table 2. Twelve nodes (numbers 3, 9, 11, 12, 14, 15, 17,
18, 20, 21, 23 and 24) and all of their corresponding dofs. were
designated to make up the interface for possible coupling with payloads.
Thus, for the booster, we have 36 fnterface dofs. (IF = 36) and 54 non-
interface dofs. (N = S4)., The booster model was forced in the
z~direction at nodes 26, 27, % snd 30 (dofs. 78, 81, 87 and 90) as
follows:

Fyg = 150000 * SIN[2TT (0.5) (t-0.001))
Fgy = 160000 * SIN[2TT (0.45) (t-0.0V2)]
Fgy = 125000 * SIN[27T (0.6) (t-0.C2)]

Fgo = 17000 * SIN[2TT (0.55) (t-0.01)}
f.e. NF = 4,

Figure 7 shows the firast payload Pl, which is made up of 18 par
eieaments. The bars are joined at 8 nodes to form this truss. The
geometry of the structure is given in Table 4 and the material properties
in Tebie 5. All nodes are assigned translational degrees of freedona
only., The four corner nodes make up the interface. We have: ND = 12,
IF = 12, NP = 12 and the interface dofs. avre 1, 2, 3, 4, 5, 6, 10, 11,
12, 13, 14 and 15.

The model of payload P2 is shown in Figure 8 . It consists of 28 bars
‘oined at 12 nodes torming a truss. The geometry and the degree of
freedom table for the model are given in Table 7 and the material
pruoperties and connections in Table 8, Again, only translational dofs.
are considered. The parameters are: ND = 36, IF = 12, NP = 24 and the
interface dofs. ave 7, 8, 9, 10, 11, 12, 19, 20, 21, 22, 23 and 24,

A total description of how to use tne softwsre package for this
sample problem {s given in the User Guide MCR-82-002
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ORIGINAL PAGE IS
OF POOR QUALITY

INPUT DATA FOR COMBINED MEMBRANE -BENDING QUADKILATERAL PLATE ELEMENTS

MASS = M1

R) = .250E-01
T(MASS) = . 100E+00

ELEMENT
NUMBER

Table 1.

JOINT

OVEBNORN WA

STIF

E

Ny
T{MEMBRANE)
T(BENDING)

JOINT 2

[T X I FUN AR S

10

K1

. 106E+06
. 334E+00
- 100E+00
. 100E+00

JOINT 3

8

9
10
11
12

7
14
1%
16
17
18
13
20
21
22
23
24
19
26
27
28
29
30
2%

JOINT 4

Description of quadrilateral plate
elements for the booster model used

in sample problem 2
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ORIGINAL PAGT 1S
OF POOR QUALITY

JOINT DATA USED IN SUBROUTINE FEMKA

DEGREES OF FREEDOM GLOBAL CARTESIAN COORDINATES
TRANSLATION ROTATION

JOINT U v | J P [v] R X Y z
1 1 2 3 [ 0 0 5.0000 0.0000 50
2 4 ] 6 o 0 o] 2.5000 4.3300 80.
3 7 8 ] o} [¢) (o) -2.5000 4.3300 50.
4 10 1" 12 (o) 0 o] -5.0000 ©0.0000 50
S 13 14 15 o (o] (o) -2.5000 -4.3300 50.
6 16 17 18 (o] (o) 0 2.5000 -4.3300 $0.
7 19 20 21 0 0 0 5.0000 0.0000 25
8 22 23 24 Q 0 o) 2.5000 4.3300 25.
9 25 26 27 o 0 0o ~2.5000 4.3300 25.
10 28 29 30 o) 0o [¢] -5.00C0 0.0000 25
11 31 32 33 0 0 o -2.5000 -4.3300 25
12 34 35 36 0 0 0 2.500C -4.3300 25.
13 37 38 33 0 o] (o] 5.0000 0.0000 o
14 40 41 42 0 0 0o 2.5000 4.3300 o]
15 43 a4 45 o} 0 (o] -2.5000 4.3300 0
16 46 a7 48 o 0 (o) -5.0000 ©.0000 o
17 49 S0 St o 0 o} -2.5000 ~-4.3300 o]
18 52 53 54 (o) (o] o] 2.5000 -4 .3300 0
19 55 56 57 (o] (o] 0 5.0000 0.0000 -25
20 68 59 60 0 (o} o] 2.5000 4.3300 -25.
21 61 62 63 o] 4] o/ ~2.5000 4.3300 -25.
22 64 65 66 (o] (o] o] -5.0000 0.0000 -25
23 67 68 69 0 0 o -2.5000 -4.3300 -25.
24 70 71 72 o o o 2.5000 -4.3300 -25.
25 73 74 75 o Qo [¢] 5.0000 0.0000 -50.
26 76 77 78 o] o} (o) 2.5000 4.3300 -50.
27 79 80 81 0 (¢} (o] -2.5000 4.3300 -50.
28 82 83 84 Q o o -5.0000 0.0000 -50.
29 85 86 87 o} (o] (o] -2.5000 -4.3300 -50.
30 88 89 90 (o} ¢ o] 2.5000 -4.3300 -850

133300000000 RRRERRRARANNENE

Table 2. Geometry desciption and degree of freedom table
for the booster model used in sample p._oblem 2
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3'," ‘:;-i“"“;
ORGITAS i
OF PU-"R JOINT DAT2 USED IN SUBRGUTINE FEMKA
DEGREES COF FREEDCY GLOBAL CARTESIAN COORDINATES
TRANSLATION RO“ATION
JOINT u v ] P Q R X ' 2
1 1 2 2 ¢ 0 0 2.5000 4.3300 0.
2 4 5 € 0 0 0 -2 5000 4.33%0 0
3 7 g ° ) ) 0 -2.5000 -1.0000 1.0000
4 10 11 th 9 o} 0 -2.5000 -4.33n0 €.2000
5 13 14 15 b ) 0 2.5000 -4.3300 C.0C20
6 16 17 18 ) 0 ) 2.5000 -1.0002 1.
7 19 20 21 0 ) o -2.5000 -1.0002 -1.0000
8 22 23 28 0 o 0 2.5000 -1.0000 -1,
Table 4., Geometry and degree of freedom table
for payload 1
INPUT DATA FOR BAR ELEMENTS
KODEK = KODEB =
MASS = M1 STIF = w+ LOAD TRANS = PAY3LT  STRESS TRANS =
RO = .250€E-02 E = .106E+05 ALFHA = O.
G = 384E+07
ELEMENT JOINT JOINT  REF AREA FOLAR TCISION 2 BENDING '+ BENDING SHEAR
NUMBER 1 2 POINT INERTIA CONST INERTIA INERTIA  FACTOR
1 5 1 2 100E -2 167E-Q8 . '21E-04  .833E-05 833E-05  .833
2 1 2 3 1006-21 167E-DA L *39E-04 233E-05  .833E-05  .833
3 2 3 1 J10CE-2t L 1B8TE-04 . 12:E-04 €33E-0%  .8233E-05  .833
4 3 6 1 1008 -2 1€7E-04 . *49E-04 233€-75  .933E-05 833
5 3 1 2 100821 ‘67E-Q4 . 741E-04 . 833E-05  .B3IE-05  .833
6 8 2 1 1028 -0 167E-04 *41€-04 £33E-05  .833E-05  .833
7 3 4 € J1O0E-71 . 167E-04 . 131E-04 . 833E-05 . B2IE-C5  .833
8 4 5 ' 1008 -3 *67E-04 . 111£-04  .B33E-05  .833E-05  .833
9 5 6 3 1008 -2 t57E-04 . "41€-04  .833E-05  .83IE-OCS 833
10 4 6 1 S100E -2 167E-04 . °21E-04 . B33E-05  .B33E-05  .833
1" 7 5 4 J1COE-21 . 167E-04 . 'atE-04  .833E-05  .233E-05  .833
12 6 8 & J10CE-21 .167E-04 . 149E-04 832E-05  .833E-05  .833
13 3 7 4 100E-%Y  .167E-O4 . 141E-04  .833E-05 .833E "5  .B33
14 8 7 z 100E-09 . $67E-04 . 141E-04  .833E-05 .833E-05 .833
15 5 8 € J100€-0¢  1GTE-04 . 14%E-04  .B33E-05 .833E-05  .823
16 4 7 3 100€-0t . 187€-04 . 141E-04  .B3I3E-C5 233£-05  .833
17 1 8 6 102€E-01 . 1672-04  .*41E-04  .933E-05  .833E-05  .833
18 2 7 3 100E-71 16TE-04 1413-04  .B33E-25  .833E-05 8232

Table 5. Payload 1 material properties
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Or\l",“' -
oAb

o

:
PN

r4

T

Y BENDING
INERTIA

.833€-05
.833E-05
.833E-05
.833E-05
.833E-05
.833E-05
.833E-05
.B33IE-05
.B33E-05
.833E-05
.833E-0%
.833E-05
.833E-05
.833E-05
.833E-05
.833E-05
.833E-05
.833E-05
.833E-05
.833E-0%
.B833E-05
.833E-0S
.833E-05
.833E-05
.833E-05
.833E-05
.833€-05
.833E-05

TlATIS
LJALITY JOINT DATA USED IN SUBROUTINE FEMKA
DEGREES OF FREEDOM GLOBAL CARTESIAN COORDINATES
TRANSLATION ROTATION
JOINT ] v v P Q ] x Y
1 1 2 3 o} 0 o 2.5000 0.0000
4 -] 6 o] 0 0 2.5000 2.0000
3 7 8 9 o (] o 2.5000 4.3300
4 10 1" 12 o] 0 0 -2.5000 4.3300
5 13 14 15 o 0 o -2.5000 2.0000
6 16 17 18 0 o o -2.5000 0.0000
7 19 20 21 o] 0 o] -2.5000 -4.3300
s 22 23 24 o o] o 2.5000 -4.3300
9 25 26 27 (o) o} 0 -2.5000 0.0000
10 28 29 30 0 o o 2.5000 0.0000
11 31 32 33 ¢] 0 0 -2.5000 £.0000
12 34 35 36 o] 0 0 2.5000 2.0000
Table 7. Geometry and degree of freedom table
for payload 2
INPUT DATA FOR BAR ELEMENTS
KODEK = KODEB =
MASS = M1 STIF = K1 LOAD TRANS = PAYALT  STRESS TRANS =
RO = . 250E-02 E = .106E+05 ALPHA = O.
G = .384E+07
ELEMENT JOINT JOINT  REF AREA POLAR TORSION  Z BENDING
NUMBER 1 2 POINT INERTIA CONST INERTIA
1 1 2 4 .100E-01  .167E-04 . 141E-04  .833E-05
2 2 3 4 .100E-01 .167E-04  .141E-04  .B833E-05
3 3 4 2 .100E-01 .167E-04  .141E-04  .B33E-05
4 4 5 2 .100E-O1  .167€-04  .141€-04 .B33IE-05
] 5 6 1 .100E-01  .167E-08  .141€-04  .B33E-05
6 6 7 1 .100E-O1 .167€-04 .141E-04  .B33E-05
7 7 8 1 .100E-O01 .167E-04  .141E-04  .82I3E-05
] 8 1 6 .100%-01  .167E-O4  .141E-04  .B33E-05
9 5 2 3 .fO00E-O1  .167E-O4  .14E-O4  .833E-05
10 11 12 10 .100E-C1  .167E-04  .1a1E-04  .B33E-05
11 5 3 2 .100E-01 . 167E-04  .141E-04  .B33E-05
12 6 1 2 .AD0C-0t  .167E-04  .141E-04  .BI3E-05
13 6 2 1 100E-01  .167€-04  .141E-04  .B3IIE-05
14 9 10 12 .100E-O1  .167E-0O4  .141E-04  .B33E-05
15 7 1 8 .100E-01  _16TE-04 141E-04  .833E-05
16 4 12 3 ,100£-01 . 167€E-04  .141E-04  .B3IIE-05
17 1" 10 9 .100E-O1  .167E-O4  .141E-04 .B33E-05
18 9 8 10 .100E-O1  .1E7E-O4 .141E-04 .£33E-05
19 1 10 12 .100E-O1 . 16TE-O4 . 141E-04  .B833E-05
20 2 12 10 .100E-O1  .167E-04  .141E-04  .B33E-05
21 6 ? 1 .100E-O1 .167E-04 .‘41E-04 .BI3E-OS
22 5 11 9 .{0DE-O1  .1672-04  .141E-04  .B33E-05
23 8 10 1 .1U0E-01  .1K7E-04  .141E-04  .B3IE-05
24 10 12 1 .100E-O1 . 167E-O4  .141E-04  .B33E-05
28 12 3 2 J100E-Q1  .167E-04  .141E-04  .833E-05
26 7 9 6 J400E-01 . 167E-04 . 141E-04  .833E-05
7 " t9 6 .100E-O1  .167E-04 .141E-04 .B33E-05
28 Vi 4 5 J100E-O1 . 167E-04 . 144E-04  .B3I3E-05
Table 8. Payload 2 material properties

11i

SHEAR
FACTOR

.833
.833
.833
.B33
.833
.833
.833
.833
.833
.833
.833
.833
.833
.833
.833
.833
.B33
.833
.833
.833
.833
.833
.833
.833
.832
.833
.833
.833



The integration was carried out over 0.9 seconds. i{.e. STARIT = O,
ENDT = 0.9 and DELTAT = 0.01.

The results are encouraging. The cost per time step is equal to
0.00018 C.U. (C.U, = cost unit) in subroutine ZRESP whereas the cost per
time step for the usual TRSP3 is 0,00017 C,U, It should be recognized,
of course, that the usual TRSP3 route requires the solution of a 126 x
126 eigenvalue problem which costs 0,031 C.U. The accuracy of the
response is the same for both a%proaches. The loads program ZLOADS
requires on the average 4.X 107° C.U. in order to track a maximum and
minimum load at a particular station. This compares with 9.,)(10'6 c.U.
for the conventional technique. Again, the maxima and minima compare
well with the values generated by the conventional technique.

The theory as presented in Chapter III was also applied to the case
of the MX miscile, 1ndeed, the method lends itself very well to this
case, The missile was basically modeled in two parts, an aft and front
>nd. The number of interface dofs. is 6 being the ideal number for this
integration technique. Also, a respectable number of load cases must be
evaluated. In particular, several payload configurations have to be
investigated. The conventional technique requires a new system
eigenvalue problem for every new configuration of the Reentry Vehicles.
This undertaking was conceived as a ,arallel effort to the regular
techniques. Again, the results were encouraging. It should be noted
that damping was included, resulting in slightly different results for
the loads (difference € 0.2%Z). This can be attributed to the difference
in handling the modal damping. The model consisted of a 261 degree of frec-
don payload model and a 92 degree of freedom booster model. A cut-off
frequency of 50 Hz was chosen, resulting in a coupled booster/payload
model containing 27 cantilevered booster modes and 55 cantilevered payload

modes. The entire analysis was performed on the VAX/VMS-11/780 computer
sytem.

Another realistic sample problem is given by the Space Transportation
3ystem/Space Telescope/OMS Kit structure. Figure 9 represents the
Space Telescope.

The payload for the Space Telescope (S.T.) mission cousists of two
cargo elements: (1) the Space Telescope and (2) the OMS Kit. These two
structures are coupled to the Space Transportation System (S.T.S.).
Together, these three structures form the 1lift off system. The S.T.
itself 1s a modal synthesis of the System Support Module (S5.S.M.) and the
Orbital Telescope Assembly (0.T.A.) using interface restrained modes. A
free S.T. mass and stiffness matrix of size 214 x 214 was formed and 175
cantileveread mode shapes and frequencies calculated. There are 6
interface degrees of freedom with the S§.T.S. This means that the
interface is determinate.

The OMS Kit 1s modeled with 36 degrees of freedom and has 7 degrees
of freedom in common with the S.T.S.



Figure 9

The Space Telescope.
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The S.T.S8. 1ift off dynamic model for the hot S.R.B. propellant
condition is again provided in terms of interface restrained
coordinates. The model has 759 degrees of freedom and 300 interiace
restrained modes and frequencies were calculated. The S.T.S. interface
has 30 degrees of freedom. This means there are 30-7-6 = 20 superflucus
interface coordinates on the booster side.

A modal synthesis of the 1ift off system (S.T.S. + S.T. + OMS Kit)
was accomplished through a Craig-Bampton formulation and is used for
comparison purposes, Finally, also provided was a 1ift off forciag

function (L07201) which turns out to be a critical case for the Space
Telescope.

At this point all necessary data are available to run the six program
software package.

The number of booster restrained modes kept in the analys’

NB = 300, Similarly for payloads 1 and 2 we have NP1 += 175. 36.
The inteiface dimensions are IF = 30, IF1 = 6, TF2 = 7, and T N
The number of non-zero applied forces on the booster is equail .

The possible cost savings occur in programs RESPONS and LOADS, For
the current S,T.S.-S.T.-OMS Kit system we consider:d a start time equal
to zero and an end time equal to 10 seconds. The integration step is
equal to 0.005 seconds. Furthermore, the velocities and the elastic
accelerations at time zero are chosen to be zero.

A CDC/CYBER 75C was used to execute all programs. In this particular
case, program RESPONS required on the average 0.0015 C.U., (=realistic
cost unit) per time step h. It should be noted that a phase shift was
observed in the response compared to the conventional approach where
system modes ("model modes”) are used. This is typical for a
Newmark-Chan-Beta numerical scheme. This phenomenon is no cause for
concern if the only goal is to arrive at maximum and minimum member
loads. Although it is hard to correctly compare different techniques,
the authors feel that the cost to obtain the response compares favorably
even with the conventional system modes approach where a set of decoupled
gystem equations are solved. The average cost per time step here becomes
0.0017 C.U,'s. Note that when system modes are used, one has to perform
an additional [cp]T type multiplication on the right hand-side of the
decoupled equations. 1iIn this case this results in a mcre expensive force
term calculation than is the case in the present scheme,

The maximum and minimum member loads obtained from program LOADS are
all within 1% of the corresponding loads cbiuined from the conventional
approach. The gain in program LOADS is primarily due to the fact that no
system modes and frequencies are involved in the computations. In
addition, the term [LT2]j {ij} can be evaluated directly without

having to write {ij} in terms of accelerations and applied forces as
should be done when system modes are used. The average cost in order to
track the maximum and minimum icad at a particular station is 0.00012
C.U. which compares with 0.00026 C.U.'s for the conventioncl technique.
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Finally, we wish to discuss some of the results obtained for the
short-cut versions as discussed in Chapter IV. We tried out two schemes

based on Equation (256) in Chapter IV, The actuzl control statement used
can be written as follows:

. 2 s 2 ,
148 d g <&

where € is a small quantity chosen by the user. The left-hand side of
the inequality represents a normalized magnitude squared of the interface
acceleration feedback, Tne first scheme checks this quantit' against the
chosen &,2. If the inequality is fulfilled, then the calculations of

the A2 and A3 t~rms in Equation (253) are by-passed. The second

scheme follows the philosenhy of a direct base drive apprcach. This
means that I{f the inequal. _ 1s fulfilled st time t, we assume that the
feedbock is small at that time, and a direct base drive solution is
generated for that time. If the inequality is not fulfilled, a coupled
solution is obtained for that time step. That means that this short-cut
versic vasilates between a full-scale and a direct base drive method.

The first scheme turned out to be expensive. The reason for this is

trat a coupled base motion technqiue requires a rather signf{ficant amount
of bookkeeping .

The second scheme proved successful in the case where the feedback is
indeed small. Again, because of the added bookkeeping, it is necessary
that the E-inequality is indeed fulfilled part of the time, because
otherwise thz method becomes more expensive. It is also : alized that
more research and checking 1s necessary before a tinal judgement can be
given. Compared to the ZRESP routine, the second short-cut version
vasilates anywhere between 40X slower (coupling at all times) and 302
faster (no coupling at all).

It should be noted that ZRESP (fully coupled) is already within the
realm of reasonable cost and additional cost reduction, although
possible, may complicate matters too much.
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CHAPTER V: CONCLUSIONS AND SUGGESTIONS

1. Introduction

In Chapter I-A we reviewed and assessed a set of “"full-scale”
methodologies. This allowed us to introduce the necessary background
material in terms of a unified nomenclature. All these methods have
their merits., However, the Residi<l Mass and Stiffness Method appears to
yield the most accurate results. It is the approach which best describes
the booster structure in temms of a minimum number of modes, given a
certain cut-off frequency for the externally applied force JFgl. The
fact that no payload information is required to obtain the booster model
1s a very convenient feature in connection with the present study.

Therefore, the same booaster model can be used as long as the booster does
not change.

In C .pter I-B several short-cut methods have been discussed and
evaluated., Although each of these methods has its own merits, it is
believed that none of the . {5 acceptadble in their present stage of
development to function as a standard siiort-cut method for general use,
In fact, it would be very hard to develop an “"ultimate” short-cut
method. The main reascn for this may be the multitude of different
gituations such a method would have to accommodate .

In Chapter II we attempted the development of a full-scale numerical
integration scheme to obtain the response of a ltooster/payload(s)

gsystem. It is felt that under the right circumstances this method can be
of certain value.

A short cut v~rgion of the above numcrical scheme was developed in
Chapter III. The method is designed to vasilate between a full-up
upled base motion approach and a direct base drive method. It is hopea
that this technique wiil have the rharacteristics of both methods, i.e.,

the accuracy of the coupled base motion technique and the speed of a
direct base drive.

In Chapter IV we discuss the {mplementation and programming of the
above uethods. A software package was devcloped and checked out on
several sample problems.

In the remainder of this last chapter we shall discuss a few other
suggestions for possible short-cut approaches.
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2. Base Motion Techniques OF POOR QuaLY

The Coupled Base Motion Technique as explained in Chapter I-A, leads

to a fundamental aet of aquationa, which we repeat here for clarvity of
presentation, [

’:"u‘n] ::N“: + [‘:"u‘n]:—";l! - l-':“ﬂa] ;‘?t (257)
“w . w “ \ “ \
[tign] 151+ [t [ IRE == [me ] (101 + 120 (25m)
PYY }
] - ] b
| P {s R (339
- {\:u‘,xp] I’N: - [T:"alu] !“:R= - [T:KnTa”P‘?TP] 1*1

As mentioned {n Chapter 1-A, the payload deaigner 1a primarily
{ntereated in the reaponse of the payload {,e.,

—

|~BR]

(Y1) ° [T:"nru*‘;“ﬂv]-

-
P |« -
N TS, N
;— - '"i‘—--' -—;'- (260)
]
xl ! 01 Xy
with
+ ¥
i 10 T D
P BF BR 2
xt xx + xl (261)

. ARat
whe re 275} and {)(‘kfuuut be computed from Equationa “?57-239) and
trom Bquation (90), The base drive methud tocusea o . juation (258)
which vields §XP} provided $X®¢ on the right hand aide of Equation
(298) ts known, = The tdea ta b produce an expreasion for ’)( }w!thout
actually golving the coupled met of Rquationa (257-2%9), ~ F

Firat, conaider the coetficienta of {X”P} and {2:? {n Rquation
(259), Theae coeftictenta represent the ratio of the payload mass and
the total vehicle mass, In many STS applicationa thia ratio will be
rather amall (€ 10X), Therefore, a firat poaaibhility 1{a to ignore tiweae
terma {n Equation (259), Secondly, {n many applicationy _we can anuio a

, 80

atattcally detemminate interface, t.e.[ TIK,T, ] - [T kPTJ -Co
that Kquation (299) becowes 5’96 P P

-1
LR [ LT Ty - T L ¥BR|
R [ Tu"aru”»"vrv] [Tn"nlu] 1N (262)

(R



Ordinarilv, the coefficlent matrix of ‘X‘R} in Equation (262) is
srall and cannot be i nured A firvst |\ossibultv is to assume that {x“}
{3 amall and can be {gnored. Thia meana that the feedback of the payload
1s not fmportant, Thia can be a realistic assumption because the payload
is usually amall compared to the booster. 1In thig case we can completely
1gnore{Rr } in Equation (25%) and wrirte

(] L+ (b 150 - [rho] 1)

Equation (263) i® now effectively decoupled fr.m Equations (257) and
(259). Phyaically, ignoring the feedback of the payload means that
payload and bovater are not modally coupled, Equation (:63) is the
direct base drive equation.

A second posaibility {s to scale the vector {xa"} in Equation (262).
Indeed, let us aasume a full-scale solution is avﬁlable for some payload
Py. Now, some reiatively small changes are made in the payload Py to
generate payload P, The assumption now, {s that [}Q‘“} is wot much
different fromf ”} t.e.,

=R (260)

Equat{on (262) for payload P, can be written as

. -1
“!Im}l - [TaMnTn”n"an] [T';"nlt;! {::R}l +263)
or
’.u ™
[rhata] (587 - - [Tim*filﬂpﬁp.] o "

Taking {nto account Equation (264) {t fc!'.ws from Equations (266)
and (262) that

{;lim} [1‘5"515”9"?1 1 Ta“r’n”m"m m] { “}’ (267)

which ylelds a scaled value for ;x } to be used in Equation (258),
Again, one should investigate when auch an approach {as valid.

OKlGbvia
OF POOR QUALHY
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3. Another Possible Approach ORIGINAL PAGE iS
OF POOR QUALITY

In the course of our investigation and evaluation ot several
short-cut methods it was noted that many methods involve 2ssumptions and
approximations leading to either doubtful or cumbersome results. In
addition, it is often very difficult to assess the effects of those
assumptions on the response and the loads of the booster/payload systenm,

The basic problem is to somehow deal with the coupling effects
between booster B and payload P without solving an eigenvalue problem
pertaining to the coupled booster/payload system. This is a difficult
problem indeed. Each of the short-cut methods discussed in Chapter I-B
addresses this problem in a different way. However, the proposed
solutions invariably lead to cumbersome mathematics and program cnding.
This observation led us to the development of a more direct approach
which we think shows great promise. This new approach is easy to
understand and easy to implement. It is bzsed on the work of C. W. White
and B, D. Maytum [74].

Let us recall Equation (25) |

B

T, | Ty x Te x| B
Myt TpMpTp | rele | ) % , [ %&*TeReTr) O Xy 0 (268)

T bor =p i 2\ |

T | el | U o ety |1 Lo

which represents the set of equations of motion of the coupled
booster/payload system. It is now assumed that a cut-off frequency is
defined based on a Fourler series expansion of {F=3}. Furthermore, we
also assume that e.g. the Residual Mass and Stiffness Method was used to
construct the following set of modally coupled equations.

T I o e 2 x: T, T '
T+, TprpTpdy « $pTpMpIpty | | ap . _[c_»B} + 0pTpKpTptyt ]_qB
T I ' o
P T =p el | 2
*n IpMpTpdp | I Iy 0 [Logd]' ay
)
pi ¥
¢, ' 0
where - (B _____
269
0 (269)

A B
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and the cut-off frequency was used to letermine the size of [<h3 ] and
[aa:]. In other words, the size of Equation (269) is already much less
that the size of Equation (268). Due to e.g. the Residual Mass and
Stiffness Method, the reduced Equation (269) still represents an
acceptable model for the coupled booster/payload system.

The first step of the present approach is to solve the eigenvalue
problem associated with Equation (269), namely

T.T I i ¥ P 2 T.T i
I‘IH'BTPMPTPOB ' 9pTpMplpdy . {upd + 05TpKpTpdy |
- 1~“
)

l?:rxgnyrl,% Voot 0 fd /

-l

EWJ = iO} (271)

yielding a set of modes [{J/ ] and a set of frecuencies bJI?J
satisfying

3
= [¥ N}
ay (272)
and
T | T Lo TN Tdy
[*] + -4 (273

T
=P _T '
| oy IpMpTptg t I

-

§
SRR

J 1

L : :[;Iﬂ J [v] - M (274)

where-tu}-are the new normal coordinates. Substituting trarsfowmation
(272) into Equation (269) and premultiplying by [qJ]T and using
Equations (273-274) we obtain the uncoupled sat of equations,

: 1]

{ub [92] {u} - [“']T B (275)

The modal matrix [{/] and the frequency matrix ﬁﬂ?J represent the
modal information of the coupled booster/payload system. The idea now is
to change the payload and calculate the changes in {{] and Ln?J. In
other words, we use the full-scale solution of Equation (269) as a
“start-solution”. This approach is tzken in most short-cut methods and
as such does not detract from the present approach. For example, this
full-scale solution could be determined at the beginning of a design
effort and would stay the same for all subsequent design cycles of a
particular payload.
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Let us now consider the new payload Pj, with mass matrix [Kp;])
and stiffress matrix [Mp;]. This payload Py could be totally new or
Jjust a modification of the nominal payload P, as long as we have the same
degrees of freedom for both payloads P and Py. For this new payload
Py, we replace Equation (268).

B1
F
T M T, .  TIMLT X T ' o
e M 5 SW Y UTrpile |} %a1 R N 3 20O SR | M W O L (276)
T t.T -P1 i r —>
: 1
p1™p1Tp1 Be3b Jh SN | I 0 tIp %ol |l 0

where

SRERE

is the new transformation matrix and

Bl
—P1 (278)
is the new system displacement vector.

Let us now write Equation (276) as follows:

§

i
T t T ” T [}
Mp*TpMpTptug gy TpMplptmyy ’ “s1{ | _5tTR%e e s 0 Xp1
) _B1_
T T VLT £ .
Ty 1 L T -1
PpTp pp ! IpMpIptmy | 1 7w 0 | IpkpTptipp 1 xy
. L)
Bi (279)
Fy
where 0
0
(280)
] [ T ] T ]
[“an "1 Tor™1Te1| | ToMpTp
) ] 4
(281)
NN EE Ty 1 e T
mBPJ r1'py 2y PMplp| = L‘Tpl“Px - TeMp) 1,
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Bpp oMy Ipy ) - IP“PIP] - [Ip Mpy = Mp) IPJ
: - J - (282)
- 1 ~T h -T 1
kgp | = |Ter¥e1Te1} = |Te¥eTp
L . L J L J (283)
[ | B 11 -th[,x-1 [1 (KP-KP)I]
|ee | Lln“n 1| LIP | p Kp1 P (234)
Note that in case the interface is statically determinate
[kgg] = [0] and if in addition the geometry of the payload is not
changed then [Tpy] = [Tp] and
- . -
[“‘BB [Tp My - M) T,
i (285)
o - T >
LmBP‘ [TP Mpy - M) I (286)
I 7
“’pr Moy - M) I (287)
k =|0
[ “] [ ] (288)
=115 ( -K)1I
[kPP] [P K- % r] (289)

Also, note that if no changes are made in the mass the right hand
sides of Equations (282) and (285-288) become [0} and similarly, if no
stiffness changes are made we heve trom Equation (277) that
[Tp] = [Tp1] and consequently Equations (285-288) are valid while
Equation (289) becomes [kpp] = {C] although the interface can srill be
statically indeterminate.

Next, let us define the following trangformation

x .10 q q
Bl B
_____ - --‘{--__ 2 Y A Bl (2906)
-P1 =P -P1] —P]
*N Oy N Iy In
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After substituting Equation (290) into Eguation (279) and

premultiplying by [A]' we obtain the set of equations that now replaces
the set Equation (269)

ORIGINAL PAGE ]
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I+¢B P"PTP°B+¢B'°33 3 | 6 TP Ipty+opmppdy 451
pr T 1 1 2T _p el
°N Ip¥pTpty ¢'N “‘BP | THoy mppdy ay
| . ’ 3F§1§
t“’n] +4’13 PKPTP¢ +¢BkBB¢ ' g1 t ¢g 1 O
0 ! ‘2] +¢N kPP" ;:1 0

(291)

The next step i1s to define the transformation

By

Trke transformation (292) is now substituted : ..o Equation (291) after
which we premultiply by [\}']T and invoke rroperties (273-274), yielding

T

[ - HT fimte) toaety H A
T T %1
i T4,i I

Oy Tpp 8! %y Tppty
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This Equation (293) replaces Fquation (275). For convenience, let us
denote

— -

T (T P
- 7 | S

| ®x ™p®Bi ®x Tpply _

\
T 0
1 T kaBB¢Bj [
“J’ Y 0 17 ¥ (295)
) ¢n kpptn ]

(294)

Matrices [M] and [k] represent the perturbations in the mass and
stiffness matrices [I) and Lﬂ?J of system (275). At this point,
several observations can be made. First it should be noted that it is
very possible that certain changes in the payload will only affect a
limited number of modes and frequencies. This means that several columns
in {{/] and corresponding elements in Lﬂ?] will not change after the
changes in the payload are made. This reduces the size of Equation
(293). Secondly, in solving the eigenvalue problem associated with
Equation (293) it is possible to use a Rayleigh-Ritz approach with [I] as
the estimated start modes. The smaller the changes in the payload the
better estimate [I] will be and the less iterations will be necessary to
produce the new modes and frequencics of the perturbed booster B/Paylonad
Pl system. An even better starting set of modes could be the solution to
the perturbed eigenvalue problem with all off-diagonal terms equal to
zero (this is equivalent to the first term in a Taylor series expansion
of the perturbed system modes and frequency). Thirdly, we wish to
investigate the possibility of truncating modes in [4’] according to the
initially defined cut-off frequency. If this was possible Equation (293)
could be reduced in size by approximately 507 compared to the already
reducad system Equation (269). This reduction would be in addition to
the one due to unaffected modes as mentioned above. However, this
question must still be carefully investigated. Finally, it is also
possitle that the modes are grouped in subgets which show very little or
no coupling between each other. This means that the eigenvalue problem
associated w.th Equation (293) can be replaced by two or more smaller
eigenvalue problems, which of course reduces the computation time,

There are additional advantages to this method: simplicity of use;
accuracy of results (e.g., tnis method could even be used as a full-scale
method); possibility of using engineering judgement and experience; the
possibility to identify changes required to meet certain frequency
requirements; the possibility to change branchfrequencies to decouple the
load problem leading to smaller eigenvalue problems, the potential for
significant computational time savings.
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